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THE NATURE OF PROPOSITIONAL DEDUCTION— 

A PIAGETIAN PERSPECTIVE 
 
 
S U M M A R Y: Logic was once thought to describe the laws of thought; however, a plurali-
ty of logics has now replaced classical logic, obscuring rather than clarifying the nature of 
deduction with an embarrassment of riches. In cognitive science, on the other hand, logic 
is not thought to be a psychological theory of human reasoning. Research on human rea-
soning has traditionally focussed on deduction, although human reasoning is thought to be 
much richer, and two competing theories dominated discourse in cognitive science—the 
syntactic, formal-rule, and the semantic, mental-model theory. Jean Piaget also proposed 
a psychological theory of reasoning, but, in contrast to these classical theories, he advo-
cated an operatory theory. Deduction is an integral part of Piaget’s theory, and, in this 
paper, I briefly outline Piaget’s operatory theory of propositional reasoning before expli-
cating the nature of deduction embodied in it. I conclude that the nature of propositional 
deduction according to Piaget lies in the interpropositional grouping, a natural structure at 
the heart of propositional reasoning constituted by a closed system of operations of 
thought regulated by laws of transformation. I then argue that the nature of propositional 
deduction lies specifically in the lattice constituted by the inclusion/order relations be-
tween the propositions of the interpropositional grouping. Piaget did not conceive of the 
interpropositional grouping as a logic; nevertheless, I wind up arguing that a logic con-
ceived as Piaget intimated would complement the plurality of logics with a natural logic. 
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1. Introduction 

From a logical perspective, an inference can be analysed into input, premiss-
es, and output, conclusions, and a rule of inference governing the transition from 
premisses to conclusions. Inferences are then valid if the transition from prem-
isses to conclusions occurs according to the rules of inference, and deductive 
inferences, considered paradigmatic of rational thought, are those whose conclu-
sions are necessarily true if the premisses are true. Whilst the characterisation of 
inferences may not be controversial, what logic is beyond the study of inferences 
is (Hintikka, Sandu, 2007, Section 1). It is widely accepted today that logic, once 
synonymous with classical logic, has branched into a plurality of approaches, 
characterisations, and often rival concepts of validity (Restall, Beall, 2000; 2001; 
Russell, 2019). When asked what logic is, modern logicians, in contrast to their 
pre-20th-century colleagues, thus flush with an “embarrassment of riches” (Hin-
tikka, Sandu, 2007, p. 13; Jacquette, 2007, p. 3). Equally, philosophers, logicians, 
and psychologists who seek the nature of deduction in logic alone (George, 
1997; Posy, 1997) are chagrined. 

Highlighting a mismatch between classical logic and human reasoning, John-
son-Laird concludes that “[l]ogic is an essential tool for all sciences, but it is not 
a psychological theory of reasoning” (Johnson-Laird, 2006, p. 17). Moreover, 
human reasoning is not thought to be synonymous with deduction (Harman, 
1984; 1986; van Benthem, 2007; 2008); nevertheless, psychological research has 
tended to focus on deductive inferences (e.g., Johnson-Laird, 2006, p. 3). Broad-
ly, cognitive scientists entertained three psychological theories of deductive 
reasoning: deduction is either a process based on factual knowledge; a syntactic, 
formal process, or a semantic process based on mental models (Johnson-Laird, 
1999). Since the knowledge-based theory of deductive reasoning relies on 
memory of prior inferences, it is unable to account for inferences that are confi-
dently made without precedents or even prior knowledge of the subject matter 
involved. Apart from tailor-made theories for particular aspects of reasoning, 
discourse on human reasoning was therefore portrayed as a two-horse race be-
tween the syntactic, formal-rules and semantic, mental-model theories (e.g., 
Byrne, Johnson-Laird, 2009; Johnson-Laird, 1999; 2006, Chapter Introduction; 
Rips, 2008). 

In essence, advocates of formal-rule theories maintained that reasoners rec-
ognise logical forms in premisses and apply rules of inference akin to logical 
rules when inferring. Clearly, logic is the source of inspiration for these theories, 
and, rather than being an embarrassment, the plurality of logics could serve as 
a rich source of hypotheses for the formal rules of inference employed in reason-
ing (e.g., Stenning, van Lambalgen, 2008; 2011). Advocates of the mental-model 
theory, on the other hand, maintained that reasoning is a process of envisaging 
possibilities. In essence, reasoners construct models of possibilities consistent 
with the premisses given and draw conclusions based on them. In contrast to the 
syntactic, formal-rules theories and classical logic, content and context rather 
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than form therefore play an important role in the mental-model theory. However, 
portraying the discourse as a two-horse race between rival psychological theories 
of reasoning was misleading. Jean Piaget also proposed a psychological theory 
of human reasoning, and, being based on operations of thought, it is fundamen-
tally different from both the formal-rules and mental-model theories.  

Piaget’s theory has all but disappeared from mainstream debate on reasoning. 
A reason for its disappearance may lie in Piaget’s theory being classified as an 
outdated progenitor of formal-rule theories (e.g., Johnson-Laird, 1999, p. 114; 
2006, p. 14); “reasoning is nothing more than the propositional calculus itself” 
(Inhelder, Piaget, 1958, p. 305; Johnson-Laird, Byrne, Schaeken, 1992, p. 418), 
for example, is the citation Johnson-Laird uses to support a formal-rule-theory 
interpretation of Piaget’s theory. However, Johnson-Laird does concede that 
“Piaget’s views on logic are idiosyncratic” (Johnson-Laird, Byrne, Schaeken, 
1992, p. 418), and “[i]t is not always easy to understand Piaget’s theory” (John-
son-Laird, 2006, p. 249). Johnson-Laird’s confessions express popular assess-
ments of Piaget’s theory of reasoning among Anglophone cognitive psycholo-
gists (Bond, 1978; 2005), and they corroborate Piaget’s own impression that his 
work was poorly understood (Smith, Mueller, Carpendale, 2009, pp. 1–10).  

Difficulties in understanding Piaget’s theory are exacerbated by the inacces-
sibility of his original works in a predominately Anglophone research environ-
ment. He wrote in French, and translations into English are selective and not 
rarely dubious in quality (Smith, Mueller, Carpendale, 2009, pp. 28–44). Return-
ing to the citation Johnson-Laird uses to substantiate his claim, Lesley Smith 
considers “reasoning is nothing more than the calculus embodied in proposition-
al operations” (Smith, 1987, p. 344) to be a more faithful rendition of the French 
original. The difference in translations may seem minimal, but this paper shows 
that the operatory standpoint is essential for the correct understanding of Piaget’s 
theory of human propositional reasoning and the nature of propositional deduc-
tion in particular.1 

I begin my exposition of the operatory nature of deduction by introducing 
operations of thought (Section 2). Piaget attempted to cast the calculus embodied 
in propositional operations in a formal language by using the algebraic tools 
logic put at his disposal, and, due to its formal appearance, the calculus might 
easily be mistaken for a logic. Before setting out the interpropositional grouping, 
I therefore briefly explicate “psycho-logic” (Section 3) to clarify Piaget’s inten-
tions. I then go on to set out the calculus embodied in propositional operations of 
thought (Section 4), beginning with the most elementary interpropositional 
grouping constituted by the affirmation and negation of a single proposition (4.1) 
before setting out its systematic extensions to multiple propositions. At this 
point, I would like to apologise to the reader for rehearsing Piaget’s operatory 
theory of reasoning in such detail, especially to those familiar with his work. 

 
1 For the sake of brevity, the additional attributes are assumed on writing “reasoning” 

and “deduction” from now on. 



42 MARK ANTHONY WINSTANLEY  
 

In view of misconceptions surrounding Piaget’s theory, however, I feel obliged 
to adumbrate and justify my interpretation.2 The extensions are based on impli-
cation, and I set out the four distinct forms of implication inherent in the inter-
propositional grouping (Sections 4.2 and 4.3), before presenting Piaget’s analy-
sis of these forms from the point of view of deduction (Section 5). I then charac-
terise the nature of deduction according to Piaget—broadly first, from a dia-
chronic then a synchronic perspective; in detail second, by focusing specifically 
on the forms of implication (Section 6)—before concluding (Section 7) with 
a brief remark on a ramification of the nature of deduction according to Piaget 
for logical pluralism. 

2. Operations 

By joining propositions to others using propositional connectives, such as 
“and” (∧), “or” (∨), “if-then” (⊃), etc., compound propositions are constructed. 
The meaning of the compound proposition is then constituted by the meanings of 
the constituent propositions and the propositional connective involved. Just as 
compound propositions are composed of parts, the propositions themselves are 
also composite in nature. In contrast to compound propositions, however, the 
constituent parts are not propositions; “Mammals are vertebrates”, for example, 
has a subject “mammals”, predicate “vertebrates” and a logical constant “is”. 
These parts can be substituted for others, and the meaning of the whole proposi-
tion is constituted by the meanings of its parts. Operations are intellectual activi-
ties that compose and decompose such connections between propositions or 
between the parts of propositions (Piaget, Grize, 1972, p. 9). Piaget denotes the 
former “interpropositional operations” and the latter “intrapropositional opera-
tions” (Piaget, Grize, 1972, pp. 34–35). In this paper, I focus on interproposition-
al operations although deduction also occurs in intrapropositional reasoning.  

Whether intra- or interpropositional, Piaget describes the psychological na-
ture of intellectual operations as follows:  

[O]perations are actions which are internalizable, reversible, and coordinated into 
systems characterized by laws which apply to the system as a whole. They are ac-
tions, since they are carried out on objects before being performed on symbols. 
They are internalizable, since they can also be carried out in thought without los-

 
2 Partly due to no standard edition of Piaget’s work in French existing and reliable 

English translations being few and far between, misconceptions of Piaget’s work are 
abound. With readers’ convenience in mind, some exegetical overlap is therefore inevita-
ble (e.g., Winstanley, 2021). However, the manuscripts pursue entirely different questions 
on the basis of the exegeses: using Piaget’s theory of reasoning as an example of how psy-
chology may legitimately serve as logical evidence for logical theory, Winstanley (2021) 
focuses on the interface between logic and psychology and elaborates ramifications for anti-
exceptionalism about logic; the current paper, in contrast, elucidates the nature of proposi-
tional deduction according to Piaget and therefore has a psychological focus. 
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ing their original character of actions. They are reversible as against simple ac-
tions which are irreversible. In this way, the operation of combining can be invert-
ed immediately into the operation of dissociating, whereas the act of writing from 
left to right cannot be inverted to one of writing from right to left without a new 
habit being acquired differing from the first. Finally, since operations do not exist 
in isolation they are connected in the form of structured wholes. (Piaget, 1957, 
p. 8; see also Piaget, 1971a, pp. 21–22; 2001, Chapter 2; Piaget, Beth, 1966, 
p. 172; Piaget, Grize, 1972, p. 55) 

Piaget used logical tools to represent the structured wholes formed by operations. 
However, precisely because of their formal appearance, it is important to 
nip misconceptions in the bud by clarifying how Piaget intended these models 
to be understood. 

3. Psycho-Logic 

Logic is concerned with what conclusions follow from what premisses, and 
it develops techniques for determining the validity of inferences. Piaget’s theory, 
on the other hand, is not primarily concerned with logical consequence, and 
it does not provide techniques for assessing the validity of arguments (Grize, 
2013). Piaget understood his theory in analogy to mathematical physics. Physics 
investigates the physical world experimentally, and its criterium for truth is cor-
respondence with empirical facts; mathematics, on the other hand, is neither 
based on experiment nor does its truth depend on agreement with empirical facts. 
It is a formal science whose truth depends solely on the formal consistency of the 
deductive systems constructed. Drawing on both deductive and empirical sources, 
mathematical physicists, aiming to understand the physical world, apply mathe-
matics to physics to construct deductive theories based on the experimental find-
ings of physics. Like mathematical physics, Piaget (1957; see also Bond 1978; 
2005) also envisages “psycho-logic” or “logico-psychology” as a tertium quid. 
On the one hand, psychology investigates mental life empirically, and its criteri-
on for truth is correspondence with experimental facts; on the other hand, logic, 
like mathematics, is a deductive science concerned with formal rigour rather than 
correspondence with facts, and it has developed algebraic techniques. Psycho-
logic is an application of the algebraic tools of logic to the findings of experi-
mental psychology, and it aims to construct a formal theory based on the experi-
mental facts of psychology. In other words, psycho-logic uses logic to model the 
structured wholes systems of operations form. 

In the next section, the most elementary model of interpropositional opera-
tions is set out first, and it is followed by progressive extensions. 

4. The Interpropositional Grouping 

Piaget modelled the structured wholes operations of thought form 
with a grouping. Roughly, a grouping is a structure incorporating the reversi-
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ble operations of its namesake, mathematical groups, and the non-reversible  
operations of lattices.3 

4.1. A Proposition and its Grouping 

Given a single proposition p and its negation p̅, Piaget and Grize (1972, 
pp. 321–322) set out the operations of the grouping as follows: 

(i) The direct operation unites p disjunctively (∨p) with other propositions of 
the system. Since p̅ is currently the only other proposition, p̅ ∨ p = T, for 
example; T is, therefore, a compound proposition comprised of p and p̅, and 
it is also part of the system. 

(ii) The inverse operation unites the negation of p conjunctively (∧ p̅ ) with 
other propositions of the system; for example, T ∧ p̅ = p̅, p ∧ p̅ = o, etc. o is 
therefore also a proposition of the system. 

(iii) The general identity operation, denoted (∨o), is a) the product of direct and 
inverse operations, p ∧ p̅ = o; and b) it leaves the propositions it is com-
posed with unaltered; for example, p ∨ o = p, p̅ ∨ o = p̅, T ∨ o = T, 
o ∨ o = o, etc. 

(iv) Despite not being composed of direct and inverse operations, some opera-
tions also leave the propositions they are composed with unaltered much 
like the general identity; for example, p ∨ p = p; p̅ ∨ p̅ = p̅; p̅ ∧ p̅ = p̅; etc. 

 
3 Mathematically, a group is a set of elements with a binary operation that combines 

any two elements of the set to form a third in such a way that the group axioms— associa-
tivity, identity, and invertibility—are satisfied.  

A lattice, on the other hand, can be defined in two different ways. On the one hand, it 
is a partially ordered set in which any two elements have both a least upper bound (meet) 
and a greatest lower bound (join). A partially ordered set, poset 𝓟𝓟 for short, is an algebraic 
system in which a binary relation x ≧ y is defined satisfying the following postulates: 
P1: For all x, x ≧ x  (reflexive property) 
P2: x ≧ y ∧ y ≧ x, x = y (antisymmetric property) 
P3: x ≧ y ∧ y ≧ z, x ≧ z  (transitive property) 

The binary relation satisfying these postulates is called an inclusion or order relation 
(Rutherford, 1966, p. 1). For elements x and y of a lattice 𝓛𝓛, the meet is denoted x∪y and 
the join x∩y. 

Alternatively, a lattice is a set 𝓛𝓛 of elements with two binary operations ∩  and ∪ satis-
fying the following postulates for all x, y, z, … of 𝓛𝓛 (Rutherford, 1966, pp. 4–5): 
L1∩ : x∩y = y∩x L1∪: x∪y = y∪x (Commutative Laws) 

L2∩ : x∩(x∩z) = (x∩y)∩z L2∪: x∪(y∪z) = (x∪y)∪z (Associative Laws) 

L3∩ : x∩(x∪y) = x L3∪: x∪(x∩y) = x (Absorptive Laws) 
Via the identity y = x∩y ≡ x ≧ y ≡ x∪y = x, the two definitions can be shown to be 

equivalent (Rutherford, 1966, Section 4). 
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(self-inclusions), and p̅ ∨ T = T, i.e., p ∨ (p ∨ p̅  ) = (p ∨ p̅ ) (absorptions). 
These operations are special identities. 

(v) Finally, the compositions are only partially associative; e.g., p ∨ (p̅ ∨ o) = 
(p ∨ p̅ ) ∨ o = T, whereas p ∨ (p ∧ p̅ ) ≠ (p ∨ p) ∧ p̅ because p ∨ (p ∧ p̅ ) = 
p ∨ o = p and (p ∨ p) ∧ p̅ = p ∧ p̅ = o.4 

The first three operations are reversible like the operations of a group. 
Moreover, T = p ∨ p̅, p ∧ p̅ = o, as well as p ∨ o = p and p̅ ∨ o = p; the group-
like operations are therefore reminiscent of the laws of thought, excluded middle, 
non-contradiction, and the law of identity, respectively. The fourth operation, on 
the other hand, is characteristic of a lattice, and p ∨ p (self-inclusion) and 
p ∨ o (direct operation and the general identity), especially, limit the associativity 
characteristic of the operations of a group. 

Since the direct operation operates on all the propositions of the system, it also 
combines p̅ disjunctively with other propositions of the system so that p ∨ p̅ = T, 
for example, and the corresponding inverse operation is T ∧ p̅̅ = T ∧ p = p. Since 
the inverse operation (∨p̅ )������ = ∧ p̅̅ = ∧p, conversely (∧ p)������ = (∧ p̅̅ ) �������= (∨ p̅ )�������������� = (∨ p̅ ), 
Piaget and Grize (1972, pp. 321–322) define ∧p and ∨ p̅ as another reversible 
pair of operations in the grouping just like ∨p and ∧  p̅. These operations intro-
duce their own special identities; for example, p ∧ p = p (self-inclusion), but 
p ∧ T = p and p̅ ∧ T = p̅ instead of absorption. ∧T is the most general of these 
special identities, and, like the general identity operation, it leaves the proposi-
tions it is composed with unaltered; unlike the general identity, however, it is not 
composed of direct and inverse operations.  

4.2. The Forms of Implication 

Implication is one of the few logical operators already present in the elemen-
tary grouping involving the affirmation and negation of a single proposition 
(Piaget, Grize, 1972, p. 323),5 and, by differentiating the implication p ⊃ T into 
a chain of implications, the elementary grouping can be extended to multiple 
propositions as follows: 

 
4 Another possible source of confusion needs to be nipped in the bud. The symbolism 

is familiar from propositional logic; however, it does not have the conventional meaning 
(Apostel, 1982). Piaget (Piaget, Beth, 1966, pp. 180–181) simply found it convenient to 
adopt the symbolism of propositional logic and give it a whole new meaning in the con-
text of his operatory theory.  

5 (T ∧ p) ∨ (T ∧ p̅ ) is a composition of the operations of the elementary grouping. By 
substituting the p and T of the elementary grouping for p and q in column 7 of Table 1, the 
disjunctive normal form of the conditional p ⊃ T = (T ∧ p) ∨ (T ∧ p̅ ) ∨ (T̅ ∧ p̅ ) is ob-
tained. However, it reduces to p ⊃ T = (T ∧ p) ∨ (T ∧ p̅ ) in the elementary grouping since 
T̅ = o therefore (T̅ ∧ p̅ ) = o. 
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p ⊃ q; q ⊃ r; r ⊃ s; s ⊃ t … u ⊃ T 

where q now plays the same role for p as T did for p in the elementary grouping; 
r, for q; s, for r, etc. By systematically elaborating the operations of the grouping 
on this chain of implications, Piaget and Grize (1972, pp. 324–325) discerned 
four distinct forms of implication. 

4.2.1. Form I. 

In Form I (Piaget, Grize, 1972, pp. 324–327), q = pq ∨ p̅q expresses the 
common and non-common parts of p and q in analogy with T = (T ∧ p) ∨ (T ∧ p̅ ). 
The non-common part, p̅q, is the relative complement of p in q, and Piaget de-
notes it p’; q can therefore be expressed more concisely as q = p ∨ p’. Proceeding 
analogously for the other propositions in the chain, we have r = q ∨ q’, where 
q’ = r ∧ q̅; s = r ∨ r’, where r’ = s ∧ r̅; etc. (see Figure 1). 

Figure 1 
Grouping of Implications—Form I 

 
Note. Piaget calls p, q, r, s, t, … primary propositions and their relative complements p’ = 
q ∧ p̅, q’ = r ∧ q̅, r’ = s ∧ r̅, … secondary propositions. Primary propositions in the hierar-
chy are composed of the primary and secondary propositions of the previous level as 
follows: q = p ∨ p’, r = q ∨ q’, s = r ∨ r’, … (Piaget, Grize, 1972, p. 324, Fig. 46). 

Using ∨p and ∧ p̅, one of the reversible pairs of operations of the elementary 
grouping (see Section 4.1), Piaget shows that Form I also constitutes a grouping: 
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(i) The direct operation ∨p composes a proposition p with another proposition 
of the system to form an equivalence; e.g., p ∨ p’ = q; q ∨ q’ = r; etc. 

(ii) The inverse operation ∧ p̅ composes the negation of a proposition conjunc-
tively with another proposition of the system; e.g., q ∧ p̅ = p’; q ∧ p̅ ’= p; 
p̅ ∧ p̅ ’ = q̅; r ∧ p̅ = p’ ∨ q’; etc.6 

(iii) The general identity operation ∨o is the product of the direct and inverse 
operations, e.g., p ∧ p̅ = o. Composed with other operations, the general 
identity leaves them unchanged; e.g., p ∨ o = p; p̅ ∨ o = p̅, etc. 

(iv) The special identities are self-inclusions; e.g., p ∨ p = p, p̅ ∨ p̅ = p̅, p̅ ∧ p̅ = 
p̅, etc.; and absorptions; e.g., p ∨ q = q.7 

(v) Associativity is limited because of the special identities. 

As well as being a multipropositional differentiation of the implication pre-
sent in the most elementary grouping involving the affirmation and negation of 
a single proposition, Form I thus also constitutes a grouping with ∨p and ∧ p̅ as 
direct and inverse operations (Piaget, Grize, 1972, pp. 324–325). Moreover, it is 
analogous to the inclusion of classes P ⊂ Q ⊂ R ⊂ S ⊂, etc., familiar from bio-
logical taxonomies, genealogies, etc. Piaget (Piaget, Grize, 1972, p. 103) call S, P, 
Q, R, S, etc. primary classes, and these primary classes have relative comple-
ments P’, Q’, R’ etc., which he calls secondary classes. The grandchildren of 
a grandparent Q, for example, are comprised of the children of one of Q’s chil-
dren P, and their first cousins P’. In terms of primary and secondary classes, the 
classes constituting the nesting inclusions are therefore as follows: 

P ⋃ P’ = Q, Q ⋃ Q’ = R, R ⋃ R’ = S, etc.  

Let propositions p, q, r, s, etc. express the membership of an element x in the 
primary classes P, Q, R, S, etc. and p’, q’, r’, etc., its membership in the second-
ary classes P’, Q’, R’, etc. Clearly, if q is true, x is a member of Q = P ⋃ P’ 
therefore x is a member of either P or P’, i.e., p ∨ p’; Form I, therefore, corre-
sponds to the nesting inclusions of classes typically found in Porphyrian trees. In 
fact, the intrapropositional operations on such classes also constitute groupings 

 
6 a) Unlike classical logic, negation of a single proposition is not a unary operator; it 

is equivalent to an inverse operation and therefore a binary operator; p̅, for example, is 
equivalent to ∧ p̅, i.e., p̅ = T ∧ p̅, the relative complement with respect to T. p̅̅ = p is there-
fore equivalent to (∧ p̅ )������� = p, the complement of the complement of p with respect to T, 
rather than p̅ ∧ p̅ = p̅.  

b) Moving a proposition from one side of an equivalence to the other is equivalent to ap-
plying the inverse operation; e.g., if p ∨ p’= q, then (p ∨ p’) ∧ p̅ ’ = q ∧ p̅ ’, i.e., p = q ∧ p̅ ’; 
similarly, p’ = q ∧ p̅; (p ∨ p’) ∧ q̅ = o, etc. 

7 Due to the special identities, rules of composition must also be observed when prop-
ositions are transferred across equivalences; e.g., (p ∨ p) = p cannot become p = (p ∧ p̅ ) 
when transferring ∨p from the left to ∧ p̅ on the right since (p ∧ p̅ ) = o and p ≠ o. 
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(Piaget, Grize, 1972, Chapter II), and Form I models one of these groupings in 
terms of propositions (Piaget, Grize 1972, p. 324). For the present purposes, 
however, the correspondence with nesting inclusions of classes simply facilitates 
the recognition of valid inferences. Clearly, if x is a member of a class, it is au-
tomatically a member of all of its superclasses; primary p, q, r, etc. and second-
ary p’, q’, r’, etc. propositions, therefore, imply primary propositions of higher 
rank; e.g., p’ ⊃ t or r ⊃ u, etc. Conversely, if x is a member of a primary class, it 
must be a member of one of the disjoint classes composing it; each primary proposi-
tion therefore implies those propositions composing it but as a whole; e.g., 
s ⊃ (p ∨ p’ ∨ r’). Finally, any subclass of a primary class of higher order can be 
determined by eliminating relative complements; any proposition can therefore 
be inferred from those of higher rank by negating complementaries; e.g., 
q’ = t ∧ s̅ ’ ∧ r̅ ’ ∧ q̅ (Piaget, Grize, 1972, p. 326). As well as the membership of 
elements in classes, propositions can also represent relations. 

4.2.2. Form II. 

Like the pair ∨p and ∧ p̅, ∧p and ∨ p̅ are also reversible operations of the ele-
mentary grouping, and Piaget (Piaget, Grize, 1972, pp. 327–329) based the second 
form of implications on this pair. As in Form I, relations between the propositions 
o, p, p̅, and T are generalised to multiple propositions; however, Form II focuses 
on the conjunctive rather than the disjunctive compositions uniting propositions 
into a whole. With ∧p as the direct operation, a series of compound propositions 
can be constructed by composing propositions p, q, r, etc. with other proposi-
tions of the system p’, q’, r’, etc. conjunctively to obtain the following equiva-
lences: p ∧ p’ = q; q ∧ q’ = r; r ∧ r’ = s; etc. (see Figure 2 on the next page). 

Unlike Form I, Form II does not correspond to intrapropositional operations 
on classes. Grandchildren, for example, cannot simultaneously be siblings and 
their own first cousins since the intersection of complementary classes is empty. 
Nevertheless, elements of classes equivalent from one point of view may differ 
in degrees of a common property, thus allowing them to be ordered. Siblings A, 
B, C, etc., for example, differ according to age, and it is possible to order them 
via the order of birth without knowing their exact numerical ages: If A was born 
before B, A is older than B (A → B), and if B was born before C, B is older than 
C (B → C); clearly, A was born before C so that A is older than C (A → C). In 
terms of propositions, let p represent “A → B” and p’ represent “B → C”, then 
q would represent “A → C”. In contrast to Form I, in which it is possible to infer 
q alone from either of the parts p or p’ constituting it, neither p nor p’ are sufficient 
by themselves to infer q in Form II. Just as it is not possible to infer A is older than 
C (A → C) on the basis of either A being older than B (A → B) or B being older 
than C (B → C) alone, only p in conjunction with p’ allows q to be inferred. 
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Figure 2 
Grouping of Implications—Form II 

 
Note. In the rows of the middle column, the compound propositions p ∧ p’, q ∧ q’, r ∧ r’, etc. 
are formed by conjunctions of the propositions in the rows immediately below it and the propo-
sition to its right; for example, q (= p ∧ p’) is the conjunction of p, below, and p’, to the right; 
r (= q ∧ q’), of q (= p ∧ p’) below, and q’ to the right; etc. (Piaget, Grize, 1972, Fig. 47). 

Conversely, maintaining “A → C” (q) while denying either “B → C” (p’) or 
“A → B” (p) would be contradictory since it affirms the whole relation while 
denying one of its constituent parts. Analogously, p = q ∧ p̅ ’ and p’ = q ∧ p̅ 
would simultaneously assert the truth of q and the falsity of one of its constituent 
parts since q = p ∧ p’. The inverse operation used in Form I of the interproposi-
tional grouping cannot, therefore, serve as an inverse operation in this form. The 
disjunctive composition of the negation of a proposition (∨ p̅ ) with another prop-
osition of the system, on the other hand, can, and compositions with this opera-
tion are q ∨ p̅ ’ = p; q ∨ p̅ = p’; p̅ ∨ p̅ ’ = q̅, etc., for example. 

4.2.3. Form III. 

In Form I, the wholes are constituted by exclusive disjunctions p ∨ p’ = q, 
q ∨ q’ = r, etc. The parts constituting the whole, therefore, have nothing in com-
mon. In Form II, on the other hand, the wholes are constituted by a conjunction 
p ∧ p’= q, q ∧ q’ = r, etc.; the whole is therefore constituted by what its parts 
have in common. Whilst Forms I and II are both extensions of the elementary 
grouping, they also represent extremes since the wholes are comprised of either 
entirely disjoint, Form I, or entirely conjoint, Form II, propositions. By constitut-
ing the wholes with propositions that are neither entirely disjoint nor entirely 
conjoint, Form III lies between these extremes.  
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Let propositions p1 and p2 constitute the whole q1 via a non-exclusive dis-
junction p1 ∨ p2 = q1. Like the previous forms, Form III also introduces new 
implications: p̅1 ⊃ p2 and p̅2 ⊃ p1 (see Figure 3). 

Figure 3 
Grouping of Implications—Form III 

 
Note. q1 is the whole constituted by the non-exclusive disjunction of two propositions p1 
and p2, and it is comprised of the three disjoint parts p1 p2’, p1 p2 and p1’p2, where p1’ = 
p̅1 ∧ q1 and p2’ = p̅2 ∧ q1. Similarly, r1 is not included in the diagram, but it designates the 
whole constituted by the non-exclusive disjunction q1 ∨ q2, and is therefore comprised of 
the 7 disjoint parts indicated. The shade of the font indicates the origin of the contribu-
tions of the parts. Although the hierarchy of nesting propositions continues, a two-
dimensional representation of their partitions has reached its limit (for a schematic repre-
sentation, see Piaget, Grize, 1972, Fig. 48). q3 = p2 ∨ q2 does not belong to the hierarchy 
directly; however, it highlights a part-whole relation inherent in the nesting hierarchy of 
propositions that is relevant to the axiomatisation of propositional logic. 

By defining p1’ as the proposition (p̅1 ∧ q1) and p2’ as (p̅2 ∧ q1), i.e., as relative 
complements, the grouping is as follows: 
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(i) The direct operation constitutes the following nesting wholes: 

(p1 ∨ p2) = q1 
(q1 ∨ q2) = (p1 ∨ p2 ∨ q2) = r1 
(r1 ∨ r2) = (p1 ∨ p2 ∨ q2 ∨ r2) = s1 
(s1 ∨ s2) = (p1 ∨ p2 ∨ q2 ∨ r2 ∨ s2) = t1, etc. 

Each of these wholes is composed of three disjoint parts (see Figure 3): 

q1 = (p1 ∧ p2) ∨ (p1 ∧ p2’) ∨ (p1’ ∧ p2) 
r1 = (q1 ∧ q2) ∨ (q1 ∧ q2’) ∨ (q1’ ∧ q2), etc. 

(ii) And conjunctions of negations of these parts constitute inverse operations, 
e.g.: 

p1 = q1 ∧ (p1’ ∧ p2)������������ ; p2 = q1 ∧ (p1 ∧ p2’)������������ 

(iii) The general identity is, for example: 

q1 ∧ q̅1 = o; i.e., (p1 ∨ p2) ∧ (p1 ∨ p2)����������� = (p1 ∨ p2) ∧ (p̅1 ∧ p̅2) = o 

(iv) The special identities are, for example: 
p1 ∨ p1 = p1; q1 ∨ q1 = q1; p1 ∨ q1 = q1 

Piaget illustrates Form III in analogy with classes. Let P1 be a class of blood rela-
tives and P2 be a class of relatives by marriage. Forming the union of P1 ⋃ P2 = Q1, 
an individual belonging to Q1 can be a blood relative and an in-law or one with-
out the other. p1 = “x ∈ P1”, p2 = “x ∈ P2” and q1 = “x ∈ Q1” express memberships 
propositionally, and, one of the members of Q1 marrying, a new class of in-laws Q2 is 
formed, in which some are blood relatives and in-laws while others are one without 
the other. The corresponding proposition is q2 = “x ∈ Q2”, and (q1 ∨ q2) = r1 repre-
sents the union of these classes Q1 ⋃ Q2. Continuing in this vein, classes corre-
sponding to s1, t1, etc. can be constructed. 

Piaget highlights some implications in Form III and draws particular attention 
to one by defining q3 as p2 ∨ q2 (see Figure 3). In terms of the corresponding 
classes, it is clear that P2 ⊂ Q3. Although P2 ⋃ P1 is no longer included in Q3, 
it is nevertheless included in Q3 ⋃ P1 , the enlargement of Q3 by the same class 
P1; hence (P2 ⋃ P1) ⊂ Q3 ⋃ P1 provided P2 ⊂ Q3. Translated into propositions, 
p2 ∨ p1 ⊃ q3 ∨ p1 provided p2 ⊃ q3, and, through suitable substitutions, this for-
mula is recognizable as (p ⊃ q) ⊃ [(r ∨ p) ⊃ (r ∨ q)], axiom IV of Bertrand Rus-
sell’s axiomatisation of propositional logic. According to Piaget, the special identi-
ty of the grouping (p  ∨  p) = p also comes to expression in (p ∨ p) ⊃ p, axi-
om I; axiom II, p ⊃ (p ∨ q), expresses the inclusion of parts in the whole 
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(p ∨ p’) = q as well as special identities due to absorption (p ∨ q) = q; and axi-
om III, (p  ∨  q) ⊃ (q ∨ p), expresses the commutativity of the operation ∨, 
on which the Forms I and III of the grouping rest. The Forms I and III of the 
grouping of implications thus condense the axioms of propositional logic, ac-
cording to Piaget (Piaget, Grize, 1972, p. 331).  

4.2.4. Form IV. 

Although the forms of implication already presented are sufficient for an axi-
omatization of propositional logic, there is nevertheless a fourth form (Piaget, 
Grize, 1972, pp. 331–334). In Form I, the wholes q = p ∨ p’, etc. are comprised 
of two disjoint parts; in Form III, on the other hand, the wholes are comprised of 
three disjoint parts q = (p1 ∧ p2) ∨ (p1 ∧ p2’) ∨ (p1’ ∧ p2). Form IV complicates 
matters still further by adding yet another disjoint part (p1’ ∧ p2’) so that the 
whole is now constituted by four disjoint parts: 

q = (p1 ∧ p2) ∨ (p1 ∧ p2’) ∨ (p1’ ∧ p2) ∨ ( p1’ ∧ p2’). 

However, Form IV is not just a complication for complication’s sake. Class 
Q corresponding to the whole q in Form I has many alternative partitions; for ex-
ample, Europeans (Q) are, from a German perspective, either Germans (P1) or non-
Germans (P1’); from an Austrian point of view, on the other hand, they are Austri-
ans (P2) and non-Austrians (P2’). Consequently, some Germans are non-Austrians 
and some Austrians are non-German. Since dual nationality is possible in the Eu-
ropean Union, there are therefore German Austrians (P1 ⋂ P2), Germans who are 
not also Austrians (P1 ⋂ P2’), Austrians who are not also Germans (P1’ ⋂ P2), and 
Europeans who are neither Austrian nor German (P1’ ⋂ P2’). Analogously, four 
disjoint parts constitute the whole in Form IV: q = (p1 ∧ p2) ∨ (p1 ∧ p2’) ∨ (p1’ ∧ p2) 
∨ (p1’ ∧ p2’). Furthermore, just as there are also Italians, Spaniards, Poles, Danes, 
Swedes, etc. in the EU each with their own national perspectives on Europeans, 
Form IV can also be extended to any number of propositions. 

Form IV will be illustrated in the next section with two propositions, but the 
same rules of composition apply as the three preceding forms and the elementary 
grouping involving the affirmation and negation of a single proposition. Piaget 
thus concluded:  

There is nothing more, in fact, in these four forms than the progressive extension 
of the same operations (∨p) and (∧p) hence one derives (∧ p̅ ) and (∨ p̅ ): The Form 
II is the correlative 8 of Form I which itself extends directly [the elementary] 

 
8 According to Piaget (Piaget, Grize, 1972, pp. 256–257), the correlative and recipro-

cal operations can be derived from the inverse operation. p̅ ∧ q̅ is the inverse of p ∨ q, for 
example, and the operation involves two substitutions: conjunctions for disjunctions and 
vice versa, and affirmations for negations and vice versa. The outcome of performing just 
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grouping […]. Form III introduces two reciprocal implications there where Form 
I only knows one, and Form IV unites in a single whole all the operations devel-
oped in the preceding forms. There is thus only one grouping in four distinct 
forms, since the inverses, reciprocals and correlatives (∨p); (∧ p̅ ); (∧p) and (∨ p̅ ) 
are composable with each other. (Piaget, Grize, 1972, p. 333, my translation) 

4.3. The Grouping of Binary Operators 

Given a whole T that is partitioned dichotomously in two different ways by prop-
ositions p and q—T = p ∨ p̅ and T = q ∨ q̅, respectively—Form IV unites disjunctive-
ly the four parts engendered into a whole T = (p ∧ q) ∨ (p ∧ q̅ ) ∨ (p̅ ∧ q) ∨ (p̅ ∧ q̅ ) = 
(p * q). Although compound, the conjunctions are nevertheless propositions like 
any other; they can therefore be substituted for the propositions in Form I, and the 
substitutions constitute a grouping as follows (Piaget, Grize, 1972, Section 39 C): 

Table 1 
16 Distinct Logical Operators of Propositional Logic 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

pq - pq - - pq pq - pq - pq - pq - pq - 

pq̅ - pq̅ - pq̅ - - pq̅ pq̅ - - pq̅ pq̅ - - pq̅ 

p̅q - p̅q - p̅q - p̅q - - p̅q - p̅q - p̅q p̅q - 

p̅ q̅ - - p̅ q̅ p̅ q̅ - p̅ q̅ - p̅ q̅ - p̅ q̅ - - p̅ q̅ - p̅ q̅ 
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Note. The columns of this table are comprised of true conjunctions only (∧ is omitted to 
save space), and they are set out in pairs constituting the full complement of 4 conjunc-
tions. Connecting the conjunctions in each column disjunctively generates the disjunctive 
normal forms of the logical operators in the bottom row. Except for *, w, p[q], and q[p] 
the binary operators are familiar. * denotes the complete affirmation; w, exclusive disjunc-
tion, and p[q] as well as q[p] are affirmations of p and q, in conjunction with either q and 
q̅ or p and p̅, respectively (based on Table 100 in Piaget, Grize, 1972, p. 214). 

 
the first substitution is the correlative p ∧ q; performing just the second operation, on the 
other hand, results in the reciprocal p̅ ∨ q̅. According to Halmos and Givant (1998, pp. 46–
47), these operations are called “complement”, “dual”, and “contradual”, respectively, and 
they depend on the principle of duality in a Boolean algebra. Moreover, these operations 
form a Klein four-group. 
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The logical operators of propositional logic can be expressed disjunctive 
normally as disjunctions of the conjunctions of Form IV. Via these disjunctive 
normal forms, Piaget shows that there are in fact 16 distinct binary operators (see 
Table 1). The columns of Table 1 are organised in complementary pairs with 
respect to the full complement of conjunctions, and, if the complementary pairs 
are composed disjunctively or conjunctively, the outcome is the complete affir-
mation or complete negation, respectively. These are the pendants to the laws of 
thought already highlighted in the elementary grouping (see Section 4.1), namely 
excluded middle and non-contradiction, respectively.  

Table 1 sets out all 16 distinct logical operators, but Form IV is not simply a static 
taxonomy of logical operators. The interpropositional grouping is a system of trans-
formations, and the logical operators can be transformed into each other as follows. 
Beginning with the equivalence (p ∧ q) ∨ (p ∧ q̅ ) ∨ (p̅ ∧ q) ∨ (p̅ ∧ q̅ ) = T, e.g., 
the outcome of conjunctively composing the negation of the last conjunction with 
both sides of the equivalence is [(p ∧ q) ∨ (p ∧ q̅ ) ∨ (p̅ ∧ q) ∨ (p �∧ q̅ )] ∧ (p� ∧ q�)��������� = 
T ∧ (p� ∧ q�)��������� , i.e., (p ∧ q) ∨ (p ∧ q̅ ) ∨ (p̅ ∧ q) = (p̅ ∧ q̅ )��������� , which is equivalent to 
(p ∨ q) since (p ∨ q) = (p̅ ∧ q̅ ) ����������. Algebraically, the transformation amounts to 
negating conjunctions of the complete affirmation and moving them to the oppo-
site side of the equivalence, where they are composed conjunctively with the 
complete affirmation; for example, (p ∧ q) ∨ (p̅ ∧ q) ∨ (p̅ ∧ q̅ ) = T ∧ (p ∧ q̅ )���������; i.e., 
p ⊃ q = (p ∧ q�)�������� (see Footnote 6b). By reversing the process, the original operator 
can then be restored. Moreover, (p |q) ∧ (p̅ ∧ q̅ )���������  = (p w q), for example, and 
(p w q) ∨ (p̅ ∧ q̅ ) = (p |q). In other words, incompatibility (p |q) is the outcome of 
composing reciprocal exclusion (p w q) disjunctively with joint negation (p̅ ∧ q̅ ). 
Whereas, the common part of an incompatibility (p |q) and a disjunction (p ∨ q) 
(= (p̅ ∧ q̅ )��������� ) is (p ∧ q̅ ) ∨ (p̅ ∧ q) = (p w q), a reciprocal exclusion. In short, the 
logical operators transform into each other, and the laws governing the system of 
transformations are those of a grouping. However, the conjunctions ∨ (p ∧ q) and 
∧ (p ∧ q)��������� rather than ∨p and ∧ p̅ of Form I constitute the direct and inverse opera-
tions of this manifestation of the grouping. And, the 16 logical operators defined 
disjunctive normally in Table 1 can be regarded as the operands of the grouping 
(cf. Seltman, Seltman, 1985).  

The operations of the interpropositional grouping are as follows: 

(i) The direct operation composes combinations of the four conjunctions con-
stituting T disjunctively (∨); e.g., (o) ∨ (p ∧ q); (p ∧ q) ∨ (p ∧ q̅ ). 

(ii) The inverse operation is the negation of combinations of these conjunctions 
composed conjunctively (∧); e.g., ∧ (p ∧ q������); ∧ (p ∧ q̅ )���������. 

(iii) The general identity operation ∨(o) leaves the elements it is composed with 
unaltered, e.g., (p ∧ q) ∨ (o) = (p ∧ q), and it is the product of the direct and 
inverse operations; e.g., (p ∧ q) ∧ (p ∧ q) ���������= o. 
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(iv) The special identities are: 
 a) Tautology: (p ∧ q) ∨ (p ∧ q) = (p ∧ q) 
 b) Reabsorption: (p ∧ q) ∨ [(p ∧ q) ∨ (p ∧ q̅ )] = [(p ∧ q) ∨ (p ∧ q̅ )] 
 c) Absorption : (p ∧ q) ∧ (p * q) = (p ∧ q) 
(v) Associativity is again limited by the special identities. 

In summary, this form of grouping engenders 16 distinct logical operators 
and unites them into a closed system of transformations. The interpropositional 
grouping thus represents operational transformations of a calculus of proposi-
tions, and, like the elementary grouping, the laws of thought are inherent in them; 
however, the transformations of the logical operators do not necessarily coincide 
with deductive inferences. 

5. Implication, Transitivity, and Deduction 

Via the direct operation of the elementary grouping, propositions p and p̅ are 
composed disjunctively into a whole p ∨ p̅ = T. The whole T is thus a proposition 
comprised of common p ∧ T and non-common parts p̅ ∧ T of p with T, i.e., 
(p ∧ T) ∨ ( p̅ ∧ T) = T. The fundamental operation of the elementary grouping 
thus engenders inclusions of parts in wholes. The conditional p ⊃ T = 
(p ∧ T) ∨ (p̅ ∧ T ) ∨ (p̅ ∧ T̅ ) is one of the few distinct logical operators already 
present in the elementary grouping. Since T̅ = o therefore p̅ ∧ T̅ = o, p ⊃ T con-
verges with the affirmation T [p] = (p ∧ T) ∨ (p̅ ∧ T); the implications p ⊃ T, 
p̅ ⊃ T, (p ∨ p̅ ) ⊃ T, and T ⊃ (p ∨ p̅ ) are therefore expressions of the part-whole 
relations engendered by the fundamental operation of the interpropositional 
grouping. More generally, composing any two propositions x and y to form 
a whole z, (x ∨ y) = z, via the direct operation of the interpropositional grouping 
generates relations of parts to the whole, which the following implications x ⊃ z; 
y ⊃ z; (x ∨ y) ⊃ z and z ⊃ (x ∨ y) express (Piaget, Grize, 1972, p. 343). 

At this juncture, an ambiguity in Piaget’s use of the term “implication” needs 
to be highlighted. In accordance with convention, Piaget uses “implication” and 
“conditional” synonymously to denote the logical operator. However, he also 
uses “implication” to denote the part-whole relations between propositions gen-
erated by the compositions of the interpropositional grouping. In such implica-
tions, the antecedent and consequent are related in some way. As a logical opera-
tor, implication p ⊃ q is defined by p ∧ q, p̅ ∧ q, and p̅ ∧ q̅ being true whilst p ∧ q̅ 
is false. In part-whole relations on the other hand the truth of p ∧ q̅ is excluded 
due to some relationship existing between the antecedent and consequent. For 
example, let p represent “x ∈ mammals” and q, “x ∈ vertebrates”; thus, some 
animals are mammalian vertebrates p ∧ q; some, non-mammalian vertebrates 
p̅ ∧ q; and others, neither mammalian nor vertebrate p̅ ∧ q̅; however, invertebrates 
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cannot be mammalian, so p ∧ q̅ cannot be the case.9 In this example, the ante-
cedent and consequent are clearly related via their predicates, and Piaget (Piaget, 
Grize, 1972, pp. 226–227) distinguished implications referring to relations from 
implication as an operator and symbolised the former p ⟶ q.  

According to Piaget (Piaget, Grize, 1972, p. 344), the primacy of implication 
is due to the transitivity of the nesting propositions it constitutes. But, first, refer-
ring to logical operators in general, surprisingly few are transitive. Piaget (Piaget, 
Grize, 1972, p. 340) illustrates intransitivity with mutual exclusions as follows:  

(p |q) ∧ (q |r) ≠ (p |r) 
(p |q) = (p̅ ∧ q̅ ) ∨ (p ∧ q̅ ) ∨ (p̅ ∧ q)  
(q |r) = (q̅ ∧ r̅ ) ∨ (q ∧ r̅ ) ∨ (q̅ ∧ r) 
(p |q) ∧ (q |r) = (p̅ ∧ q̅ ∧ r̅ ) ∨ (p ∧ q̅ ∧ r̅ ) ∨ (p̅ ∧ q ∧ r̅ ) ∨ (p̅ ∧ q̅ ∧ r) ∨ (p ∧ q̅ ∧ r) 

Alternatively, it can be written in its dual form: 

(p |q) ∧ (q |r) = (p * q * r) ∧ (p ∧ q ∧ r) �������������∧ (p ∧ q ∧ r̅ ) ��������������∧ (p̅ ∧ q ∧ r) ������������� 

For example, let p = “x ∈ invertebrate”, q = “x ∈ vertebrate”, and r = “x lives 
attached to rocks (oysters, seaweed, etc.)”. The five triple conjunctions 
(p̅ ∧ q̅ ∧ r̅ ) = neither invertebrate, nor vertebrate, nor living attached to rocks; 
(p ∧ q̅ ∧ r̅ ); etc. are all possible; in fact, only invertebrate vertebrates attached to 
(p ∧ q ∧ r) or not attached to rocks (p ∧ q ∧ r̅ ), and non-invertebrate vertebrates 
attached to rocks (p̅ ∧ q ∧ r) are not possible. Moreover, it is clear that the in-
compatibility p |r does not hold since there are some invertebrates that live at-
tached to rocks (p ∧ q̅ ∧ r). Several of the triple conjunctions are thus true due to 
(p |q) and (q |r), and, they are also true in (p |r); however, (p |r) does not neces-
sarily follow from (p |q) and (q |r) since (p ∧ q̅ ∧ r) is one of the triplets that is 
compatible with both (p |q) and (q |r) but not with (p |r). For transitive logical 
operators, on the other hand, the conclusion would hold for all of the conjunc-
tions compatible with the premisses. According to Piaget (Piaget, Grize, 1972, 
p. 345), conclusive deductions are based on the transitive logical operators.  

According to Piaget (Piaget, Grize, 1972, p. 344), conjunctions, implications, 
and equivalences, which are reciprocal implications, are the only transitive logi-
cal operators. In the case of transitivity of conjunctions (p ∧ q) ∧ (q ∧ r) = (p ∧ r), 
let “x ∈ both vertebrate and aquatic” (p ∧ q) and “x ∈ both aquatic and pulmo-
nary” (q ∧ r), for example, then, since whales, dolphins, etc. are pulmonary 
aquatic vertebrates, (p ∧ r) is clearly true. However, (p ∧ r) denotes all manner of 
pulmonary vertebrates, while (p ∧ q ∧ r) only represents the small portion of them 

 
9 NB The conjunction p ∧ q being true does not preclude the conjunctions p̅ ∧ q and p̅ ∧ q̅ 

also being true, although they are incompatible in classical logic (Apostel, 1982, Section 4). 
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inhabiting water. The transitivity of conjunctions is therefore founded on the 
three propositions p, q, and r having something in common (see Figure 4). 

Figure 4 
Transitivity of Conjunctions 

 
Note. The intersections of three propositions p, q, and r are (p ∧ q), (q ∧ r), (p ∧ r), and 
(p ∧ q ∧ r) (based on Piaget, Grize, 1972, Fig. 51). 

The operations of a grouping compose propositions, and Figure 4 represents 
a composition in which three propositions, p, q, and r, united into a whole 
p ∨ q ∨ r are barely related. Nevertheless, they still have some common ground, 
and the transitivity of conjunctions bears on the minimum they still have in 
common: “the complete conjunction (p ∧ q ∧ r) [which] is the lower bound (the 
greatest of the lower bounds) of p, q and r” (Piaget, Grize, 1972, p. 344). If, 
however, the propositions p, q, and r composing p ∨ q ∨ r are related p ⊃ q and 
q ⊃ r, then the clover-leaf shape of p ∨ q ∨ r in Figure 4 takes on the form of 
a nesting hierarchy of inclusions like Figure 1. Transitivity is again due to what 
the propositions p, q, and r have in common; however, the common ground has 
now reached a maximum since the propositions are included in each other. This 
is the smallest of the unions three distinct propositions form, and, according to 
Piaget (Piaget, Grize, 1972, p. 344), it is an upper bound on transitivity. For 
equivalences p ≡ q, q ≡ r, then p ≡ r, on the other hand, the upper and lower 
bounds of the transitivity of propositions p, q and r coincide since p ≡ q ≡ r (Pia-
get, Grize, 1972, p. 344). In short, transitivity is founded on what propositions 
have in common, and conjunctions, implications, and equivalences are the only 



58 MARK ANTHONY WINSTANLEY  
 

transitive logical operators of the grouping, and implication marks the upper 
boundary of transitivity. 

While transitivity is key to conclusive deductions, it is nevertheless quite rare 
among the logical operators of the interpropositional grouping. The operatory 
perspective on deduction might therefore appear to be inconsistent with actual 
deductive reasoning. However, the grouping unites logical operators into 
a closed system of transformations, and, via its operations, other operators inter-
act with the few transitive operators. Given p, q, r, and p ⊃ q, for example, oper-
ators such as (p ∧ r), (q ∧ r); (p ∨ r), (q ∨ r); (q |r); (p |r); etc. are able to participate 
in the transitivity of implications; (p ∧ r) ⊃ (q ∧ r); (p ∨ r) ⊃ (q ∨ r); (q |r) ⊃ (p |r); 
etc. therefore hold if p ⊃ q holds. A richness of deductions commensurate with 
that of deductive reasoning is therefore generated by the many non-transitive 
operators participating in the transitivity of the few. 

In summary, the operations of the interpropositional grouping compose prop-
ositions with one another, and some compositions engender part-whole relations 
between propositions. Implications as expressions of these part-whole relations 
thus go hand-in-hand with the fundamental operations of the interpropositional 
grouping. The conditional operator is one of the few operators already present in 
the elementary grouping, and the Forms I–IV of implication systematically ex-
tend the elementary grouping to multiple propositions by progressively differen-
tiating the part-whole relations imminent in its propositions. These Forms thus 
propagate part-whole relations between propositions and thereby proliferate 
implications in the sense of relations. Moreover, transitivity is based on the nest-
ing propositions engendered by the interpropositional grouping, and implication 
is not only one of the few transitive logical operators but also represents an upper 
bound on transitivity. Along with equivalence, which is in fact a double implica-
tion, implication is thus the primary source of conclusive deductions. In short, 
implication plays a fundamental role in the interpropositional grouping, and, 
along with equivalence, it accounts for the deductive fertility of this grouping 
(Piaget, Grize, 1972, p. 346).  

6. The Nature of Deduction According to Piaget 

The previous section has shown how the interpropositional grouping makes 
deduction possible. The nature of deduction is therefore tied up with the nature 
of the interpropositional grouping, and, in this section, I will attempt to shed 
light on the nature of deduction indirectly by characterizing the nature of the 
interpropositional grouping.  

According to Piaget, the interpropositional grouping has synchronic and dia-
chronic aspects. Starting with the latter, intelligence is a natural continuation of 
the biological adaptation of organisms (e.g., Piaget, 1952, Chapter Introduction; 
1971b; 2001, Chapter 1). Organisms are open, self-regulating systems; as such, 
they are existentially dependent on their environments, and they strive to strike 
a balance between the demands of the environment on the one hand and the 



 THE NATURE OF PROPOSITIONAL DEDUCTION… 59 
 

integrity of their biological organisations on the other through self-regulation. 
Like the biological organism, intelligence also has an internal organisation, 
adapts to its environment, and strives toward equilibrium; unlike the biological 
organism, though, intelligence actually achieves states of equilibrium. 

Moreover, intelligence evolves in a sequence of stages over time (e.g., Piaget, 
1977; 2001), and the sensorimotor, semiotic, concrete-operational, and formal-
operational are the widely accepted stages, although their number varies in Pia-
get’s works (Kesselring, 2009). These stages can be more broadly categorised 
into pre-operational—the sensorimotor, semiotic—and operational—concrete 
and formal—stages. As the terminology suggests, intra- and interpropositional 
operations occur at the operational stages. 

The first cognitive equilibria are achieved at the operational stages, but they 
are presaged by coordinations of voluntary actions involving sensory stimuli and 
motor responses during the sensorimotor stage. The advent of language at the 
semiotic stage then heralds a change. The physical world constructed at the sen-
sorimotor stage gradually becomes immersed in a world of representations. The 
effects of this immersion are twofold: on the one hand, the representational 
world not only captures the physical reality constructed at the sensorimotor stage 
but transcends it in all directions; on the other hand, the manipulations of objects, 
still enactive at the sensorimotor stage, can now be performed solely in the mind 
without physical manipulation accompanying them. The latter development is 
interiorization, and a whole new level of interiorization is achieved with the 
advent of operations (Piaget, 2001; Piaget, Grize, 1972, pp. 14–15). 

Operations are interiorised actions, and just as actions occur in coordination 
with other actions, operations occur in concert with other operations. According 
to Piaget, equilibrium is achieved, however, when these operations are coordi-
nated with others to form systems of transformations that are completely reversi-
ble. With the emergence of equilibria, the diachronic aspect is complemented by 
a synchronic aspect.  

Turning to the synchronic aspect, operations in states of equilibrium form 
structured wholes amenable to formalisation, and psycho-logic models them 
using algebraic tools of logic. Groupings are thus formalisations of the structured 
wholes intra- and interpropositional operations form in states of equilibrium; as 
such they are new constructions, but they have functional roots in fundamental 
biological mechanisms (Piaget, Grize, 1972, pp. 14–15). 

The biological roots come to expression in the cognitive function of the in-
terpropositional grouping. Given two observable phenomena represented by 
propositions p and q, it is not immediately obvious how they are related to each 
other. Conjunctions p ∧ q, p̅ ∧ q, p ∧ q̅, and p̅ ∧ q̅ represent the four possible ways 
the phenomena can be associated in observation; however, individually each 
observation does not allow the relationship between the phenomena to be deter-
mined. Observation of p and q always occurring together, p ∧ q, for example, 
could mean that p and q are related in any of the 8 ways represented by the col-
umns in Table 1 in which p ∧ q occurs. Through observation of the occurrences of 
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the four possible associations of p and q, on the other hand, the exact relationship 
between the phenomena can be determined. Observation of p ∧ q and p̅ ∧ q̅ oc-
curring without exception but no cases of either p̅ ∧ q or p ∧ q̅, for example, indi-
cates that the phenomena represented by p and q are equivalent; whereas obser-
vation of p ∧ q, p̅ ∧ q, and p̅ ∧ q̅ but no cases of p ∧ q̅ means that p implies q (see 
Table 1). The interpropositional grouping thus serves as a cognitive tool for de-
termining connections between observable phenomena and therefore represents 
a cognitive adaptation to the environment. 

According to Piaget, three key ideas characterise structures: “the idea of 
wholeness, the idea of transformation, and the idea of self-regulation” (Piaget, 
1970, p. 5). Piaget draws attention to the relational nature of parts and whole in 
structures; however, the whole is neither the sum of its parts nor are the parts 
wholly determined by the whole. Neither the whole nor the parts are primary, 
and, instead of bottom-up or top-down constructions, the parts and whole are the 
outcome of laws of construction that are both structured and structuring. Moreo-
ver, the parts are transformed by the system’s laws of composition, but the sys-
tem of transformations as a whole is closed since the outcomes of these trans-
formations also belong to the system and preserve its laws. In the interproposi-
tional grouping of logical operators, for example, neither the operands, the 16 
logical operators, nor the whole structure, the grouping, are primary; they are the 
outcome of interpropositional operations of thought achieving a state of equilib-
rium. Moreover, the operations of the grouping are laws of composition that 
transform the logical operators operated on, and the outcome of these operations 
is another logical operator that also preserves the laws of the system; the system 
of operations formed by the grouping is, therefore, closed and self-regulating. 
Like its namesake the group, the grouping of interpropositional operations thus 
fulfils Piaget’s characterisation of a structure. 

Since Frege, it has been standard practice to axiomatize logic in analogy with 
the substantial axiomatisations of extra-logical sciences (Hintikka, Sandu, 2007, 
Section 5). Accordingly, logic is reduced to a handful of axioms and rules of 
inference, from which all the formulae of logic can be derived. Axiomatisations 
of logic like those of extra-logical sciences are therefore systematisations of 
a theory; nonetheless, there are significant differences between the two. Substan-
tial theories are sets of propositions that correspond to an extra-logical reality, 
and, by reducing these propositions to a handful of postulates from which those 
describing or predicting the targeted realities can be derived, axiomatisations 
assist in understanding these realities. Moreover, in the axiomatisation of sub-
stantial theories, the derivations correspond to what is ordinarily understood by 
deduction, and the correspondence of the theory with reality as well as verifica-
tion of its predictions tend to transmit truth backwards to the axioms. Like sub-
stantial axiomatisations, the axioms of a formal system are the underived formu-
lae on which the derivation of other formulae of the theory are founded. Howev-
er, there is no difference in principle between the derived formulae and the axi-
oms of a formal system—the latter are simply formulae without premisses. 
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Moreover, any set of formulae can serve as axioms as long as they are con-
sistent—a formula and its contradictory cannot be derived from them—
preferably independent, and semantically complete—all the true formulae of the 
theory can be derived from them. Moreover, in contrast to a substantial axiomati-
sation, the derivation of the formulae in formal systems need not correspond to 
the rules of inference in logic; a mechanical means of systematically listing all of 
the formulae is sufficient. Despite similarities with formal systems, the inter-
propositional grouping models an extra-logical reality; it is therefore a substan-
tial axiomatisation, specifically a substantial axiomatisation of the equilibrium 
achieved by interpropositional operations of thought. 

The interpropositional grouping models the reversibility of rational thought, 
on the one hand, and the systems of transformations operations of thought en-
gender when they achieve equilibrium, on the other. According to Piaget (Piaget, 
Grize, 1972, Sections 36–38), the interpropositional grouping represents either 
a relaxation of the strict reversibility of groups through augmentation with inclu-
sions and self-inclusions or a tightening of the operations of a lattice through the 
introduction of reversibility into its operations. Although not purely abstract, the 
interpropositional grouping is thus a mathematical structure that lies mid-way 
between groups and lattices. According to Grize (2013, p. 152), Piaget based the 
interpropositional grouping on Boolean structures. 

There are many expressions for each of the different logical operators; despite 
their disparate guises, though, they can be shown to be equivalent by reducing 
them to their normal forms. In fact, Table 1 represents a classification of equivalent 
formulae via their disjunctive normal forms. {pq ∨ p̅q ∨ pq̅} thus represents the 
class of formulae p ∨ q, p ∨ q ∨ q, etc; {T}, the class of tautologies p ∨ p̅, q ∨ q̅, 
etc., and the class of contradictions p ∧ p̅, q ∧ q̅, etc., being empty, is represented 
by the null class {o}. Moreover, the propositional connectives ∨, ∧, and  ̅  are 
congruent with operations ∪, ∩, and ’, respectively, on these classes (Rutherford, 
1966, pp. 50–51). The operations of this grouping, therefore, correspond to opera-
tions on classes of the classification of formulae; transforming p w q into p ∨ q via 
the direct operation ∨pq, for example, is (p w q) ∨ pq = (p̅q ∨ pq̅ ) ∨ pq = p ∨ q, 
which corresponds to {p̅q ∨ pq̅ } ∪ {pq} = { p̅q ∨ pq̅ ∨ pq} in terms of classes; 
transforming p ∨ q back to p w q via the inverse operation ∧ (pq)�����, on the other 
hand, corresponds to the relative complement of {pq} in {p ∨ q} = { p̅q ∨ pq̅ ∨ pq}, 
i.e., { p̅q ∨ pq̅ } = {p w q}. The general identity is composed of the direct and in-
verse operations of a grouping, and it leaves any element of the grouping unaltered 
r ∨ o = r but r ∧ o = o; in terms of the classification of formulae, {r} ∪ {o} = {r} 
and {r} ∩  {o} = {o}; hence {o} ≦ {r} for all {r}. T, on the other hand, is a special 
identity T ∨ r = T and T ∧ r = r; therefore {T} ∪ {r} = {T} and {T} ∩  {r} = {r}; 
hence {r} ≦ {T} for all {r}. In other words, all the classes in the classification of 
formulae include {o} and are included in {T}; the classification therefore has 
a null {o} and a universal element {T}. Moreover, each element r of the group-
ing has an inverse such that r ∧ r̅ = o and r ∨ r̅ = T; for every {r} there is there-
fore a {s} such that {r} ∩  {s} = {o} and {r} ∪ {s} = {T}, i.e., a complement. 
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Since the operations of the grouping are also distributive, this complement is 
unique and can be denoted r’. The equivalence classes of formulae under the 
lattice operations corresponding to the operations of the grouping, therefore, 
constitute a complemented distributive lattice. Since a Boolean algebra is a com-
plemented distributive lattice (Halmos, Givant, 1998; Rutherford, 1966), the 
structure Piaget loosely characterised as being mid-way between groups and lattic-
es seems to correspond to a Boolean algebra.  

Halmos (2016, Chapter Introduction Section 2) remarked that “Boolean alge-
bras have an almost embarrassingly rich structure […]. In every Boolean algebra 
there is, moreover, a natural order relation [and] [t]he algebraic structure and the 
order structure are as compatible as they can be”. It is therefore desirable to nar-
row down the nature of deduction still further. 

From the viewpoint of classical logic, p ⊃ q has the same truth conditions as 
p̅ ∨ q, namely, true except when p is true and q is false. Since arbitrary proposi-
tions may be substituted into the propositional variables p and q, it is not possible 
to preclude the falsity of the compound proposition without imposing some addi-
tional constraints. In a free Boolean algebra, the postulates constitute the only 
constraints on propositions. To determine the additional constraints on p and 
q necessary for p ⊃ q to be true without exception, consider any two propositions 
p and q belonging to the classification of propositional formulae in Table 1 and 
the class {p}’ ∪ {q}, which corresponds to composing q disjunctively with the 
negation of p, p̅ ∨ q. Clearly p ⊃ q is also a member of the class {p’ ∪ q}, but, for 
it to be true without exception, {p}’ ∪ {q} = {T}, i.e., {q} ≧ {p} so that {q} is in 
the interval [{p}, {T}] (Rutherford, 1966, pp. 51–52).  

Figure 5 (on the next page) is a Hasse diagram of the equivalence classes in 
Table 1. Although it is simply an alternative representation, it has the advantage of 
bringing the lattice structure clearly to the fore. Referring to Figure 5, the condition 
set out in the previous paragraph is fulfilled provided {q} is a class of propositions 
occupying a node on one of the lines connecting {p} with {T}; for example, p[q], 
q[p], p ∨ q, etc., are propositions belonging to classes on the line connecting the 
class {p ∧ q} with {T}; the implications p ∧ q ⊃ p[q], p ∧ q ⊃ q[p], p ∧ q ⊃ p ∨ q, 
etc. are therefore tautologies. From the viewpoint of Table 1, p ∧ q implies all 
those logical operators in which it is affirmed in the disjunctive normal form. 

In Section 5, I mentioned how Piaget distinguished between implications as 
relations and as operators. In essence, relations in contrast to operators cannot be 
false due to some relation existing between the propositions, and I illustrated the 
difference with an implication in which the antecedent and consequent are relat-
ed via their predicates. By means of the lattice structure, it is possible to deal 
with such relations more generally. On the one hand, if {q} is in the interval 
[{p}, {T}], p ⊃ q is a tautology, and, in Piaget’s terminology, it is an implication 
in the relational sense. Moreover, the order relation between the classes is 
{q} ≧ {p}, which is also known as an inclusion relation since it is equivalent to 
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Figure 5 
Hasse Diagram of the 16 Logical Operators of Propositional Logic 

 
Note. The figure represents the projection onto the plane of a four-dimensional cube. The 
logical operators occupy the points of intersecting lines, and lines connecting points rep-
resent inclusion relations. Thus p ⊃ q ≧ p ≡ q, q[p], p̅ [q], pq, p̅q, p̅ q̅ and o; but not pq̅ 
(after Rutherford, 1966, Fig. 7). 

{p} = {p} ∩  {q} ≡ {p} ∪ {q} = {q}. The same inclusion relation can also be ex-
pressed, admittedly less conventionally, in terms of parts and wholes. In Piaget’s 
parlance, then, {p} being a part of the whole {q}, i.e., {p} = {p} ∩  {q} or equiv-
alently {p} ∪ {q} = {q}, thus refers to an implication p → q that cannot be false 
because an inclusion relation {q} ≧ {p} exists between the antecedent and con-
sequent. Moreover, by generalising the elementary interpropositional grouping 
formed by the affirmation and negation of a single proposition p to multiple 
propositions, Piaget, in effect, inserted propositions q, r, s, etc. in the interval 
[{p}, {T}] of the elementary grouping. The implications p ⊃ q, q ⊃ r, etc. en-
gendering the forms of implication are thus implications in the sense of relations 
p → q, q → r, etc., and Piaget’s allusions to part-whole relations in describing 
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these implications seem in fact to correspond to inclusion relations (Winstanley, 
2021, Section 3.1). 

Piaget discerned four different forms of implication, but only Forms I–III 
give rise to conclusive deductions. Developmentally, the interpropositional 
grouping synthesises intrapropositional groupings of operations on relations and 
classes into a single structure, and Forms I and III of implication can be mod-
elled by operations on classes, whereas operations on relations model Form II. 
Moreover, the part-whole relations between propositions are the basis for deduc-
tion in Forms I and III; deduction in Form II on the other hand is based on the 
transitivity of the order relation. Lattices have two equivalent definitions (see 
Footnote 3), one emphasising operations; the other, being based on a poset, high-
lighting their relational nature. Moreover, they are connected by the identity 
y = x  ∩  y ≡ x ≧ y ≡ x ∪  y = x. Order and inclusion relations, two seminal char-
acteristics of lattices, are therefore inherent in the Forms I–III of implication. 
Piaget thus appears to have attributed the nature of deduction specifically to the 
lattice structure inherent in the embarrassing richness of a Boolean algebra.  

Moreover, Piaget attributed the deductive richness of reasoning to proposi-
tions participating in the transitivity of logical operators like implication via the 
operations of the grouping. With the help of lattice theory, this can be circum-
scribed precisely: “The totality of valid deductions from a proposition or set of 
axioms p are […] those propositions belonging to the classes of the interval 
[[{p}, {T}]]” (Rutherford, 1966, p. 52). According to Piaget, From IV does not 
give rise to any new implications; however, as part of the algebraic rather than 
the order structure of a Boolean algebra, it can nevertheless contribute to the 
deductive richness of reasoning.  

7. Conclusion 

According to Piaget, the nature of human propositional reasoning lies in the 
interpropositional grouping, the calculus embodied in propositional operations, 
and the nature of propositional deduction, in particular, lies in the relations be-
tween propositions inherent in the Forms I–III of implication. If the interproposi-
tional grouping constitutes a Boolean algebra, as I have argued, then the nature 
of deduction lies specifically in the order rather than the algebraic structures of 
this embarrassingly rich structure. I therefore conclude that the nature of deduc-
tion according to Piaget lies specifically in the lattice engendered by the opera-
tions of the interpropositional grouping. 

Finally, having characterised the nature of deduction, it would be remiss not 
to touch at least briefly on its implications for logic. How Piaget regarded the 
relationship between the forms of implication and axiomatisations of proposi-
tional logic was touched on briefly at the end of Section 4.2.3. Put succinctly, the 
interpropositional grouping is the natural structure inherent in propositional rea-
soning, which “lies ‘beneath’ the operations codified by axioms [of logic]” and 
furnishes “the underpinnings of logic” (Piaget, 1970, p. 31). In other words, the 
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interpropositional grouping forms the foundation for propositional logic. How-
ever, propositional logic is not synonymous with the interpropositional grouping. 
According to Piaget, “logic is the mirror of thought, and not vice versa” (Piaget, 
2001, p. 27), and, after several iterations, Piaget eventually defined logic without 
the aid of metaphor as “the formal theory of deductive operations” (Piaget, Grize, 
1972, p. 20, authors’ emphasis). Piaget’s psychological theory of propositional 
reasoning therefore forms an evidential basis for a logic conceived as a formal 
theory (Winstanley, 2021), and the forms of implication will clearly play a semi-
nal role in its construction. To my knowledge, a Piagetian logic has yet to be 
constructed (Apostel, 1982; Grize, 2013); if it were, however, it would arguably 
constitute a natural logic among the plurality of logics since a logic is imminent 
in a structure (Shapiro, 2014), and the logic imminent in a natural structure like 
the interpropositional grouping would constitute a natural logic. 
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