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S U M M A R Y : The incompleteness theorems constitute the mathematical core of Gödel’s 
philosophical challenge. They are given in their “most satisfactory form”, as Gödel saw it, 
when the f o r m a l i t y  of theories to which they apply is characterized via Turing ma-
chines. These machines codify human mechanical procedures that can be carried out 
without appealing to higher cognitive capacities. The question naturally arises, whether 
the theorems justify the claim that the human mind has mathematical abilities that are not 
shared by any machine. Turing admits that non-mechanical steps of intuition are needed to 
transcend particular formal theories. Thus, there is a substantive point in comparing Tu-
ring’s views with Gödel’s that is expressed by the assertion, “The human mind infinitely 
surpasses any finite machine”. The parallelisms and tensions between their views are 
taken as an inspiration for beginning to explore, computationally, the capacities of the 
human mathematical mind.2 
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viously published in Copeland, B. Jack, Carl J. Posy, and Oron Shagrir, eds., Computabil-
ity—Turing, Gödel, Church, and Beyond, © 2013 Massachusetts Institute of Technology; 
it is reprinted here by permission of The MIT Press. The author has added a new Post-
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2 In Milan Kundera’s Ignorance (2002) one finds on page 124, “We won’t understand 
a thing about human life if we persist in avoiding the most obvious fact: that a reality no 
longer is what it was when it was; it cannot be reconstructed”. These remarks of Kundera, 
born in Gödel’s hometown Brno, apply even to attempts of understanding and reconstruct-
ing a limited aspect of past intellectual life. 
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Introduction 

“To Turing” is flanked by parentheses in the title, as the philosophical chal-
lenge issued by Gödel’s mathematical results, the incompleteness theorems, was 
not only a challenge to Turing but also to Gödel himself; it certainly should be 
taken up by us. At issue is the question whether there is a rigorous argument 
from these results to the claim that machines can never replace mathematicians 
or, more generally, that the human mind infinitely surpasses any finite machine. 
Gödel made the former claim already in 1939; the latter assertion was central in 
his Gibbs Lecture of 1951. In his note of 1972, Gödel tried to argue for that as-
sertion with greater emphasis on subtle aspects of mathematical experience in set 
theory. He explored, in particular, the possibility of a humanly effective, but non-
mechanical process for presenting a sequence of ever-stronger axioms of infinity.  

To understand the claims in their broad intellectual context, one is almost 
forced to review the emergence of a rigorous notion of computability in the early 
part of the twentieth century. Gödel’s role in that emergence is “dichotomous”, as 
John Dawson noted in his lecture (2006). There are crucial impulses, like the 
definition of general recursive functions in the 1934 Princeton Lectures. This 
definition was the starting point for Kleene’s work in recursion theory and served 
as the rigorous mathematical notion in Church’s first published formulation of 
his “thesis” in (1935). However, there is neither a systematic body of recursion 
theoretic work nor an isolated central theorem that is associated with Gödel’s 
name. The reason for that is clear: Gödel was not interested in developing the 
theory, but rather in securing its conceptual foundation. He needed such a foun-
dation for two central and related purposes, namely, (i) to formulate the incom-
pleteness theorems in mathematical generality for all formal theories (containing 
arithmetic) and (ii) to articulate and sharpen philosophical consequences of the 
undecidability and incompleteness results.  

The philosophical consequences, as I indicated, are concerned with the 
claimed superiority of the human mind over machines in mathematics. This takes 
for granted that a convincing solution to the issue indicated under (i) has been 
found and that such a solution involves suitably characterized machines. The first 
two parts of this essay, entitled Primitive & General Recursions and Finite Ma-
chines & Computors, present the general foundational context. It is only then 
that the central philosophical issue is addressed in the third part, Beyond Mecha-
nisms & Discipline. Gödel’s and Turing’s views on mind are usually seen in 
sharp opposition to each other. Indeed, Gödel himself claimed to have found 
a “philosophical error in Turing’s work”; his argument for such an error rests on 
the (incorrect) assumption that Turing tried to establish in (1936) that mental 
procedures do not go beyond mechanical ones. If one focuses on the real chal-
lenge presented by the incompleteness theorems, then one finds that Gödel and 
Turing pursue parallel approaches with complementary programmatic goals, but 
dramatically different methodological perspectives. Concrete work to elucidate the 
situation is suggested in the last part of the essay, Finding Proofs (With Ingenuity). 
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I. Primitive & General Recursions 

It was of course Kronecker who articulated in the 1870s forcefully the re-
quirement that mathematical objects should be finitely presented, that mathemat-
ical notions should be decidable, and that the values of functions should be cal-
culable in finitely many steps. And it was of course Dedekind who formulated in 
his essay Was sind und was sollen die Zahlen? the general schema of primitive 
recursion. At the turn from the nineteenth to the twentieth century, Hilbert trans-
ferred Kronecker’s normative requirements from mathematics to the frameworks 
in which mathematical considerations were to be presented, i.e., to axiomatic 
theories. This shift was accompanied by a methodologically sound call for proofs 
to establish the theories as consistent.3 A syntactic and, in Hilbert’s view, first 
“direct” consistency proof was given in his (1905) for a purely equational theory. 
The approach was criticized fairly by Poincaré and, for a long time, not pursued 
further by Hilbert. Only in 1921 did Hilbert come back to this particular argu-
ment and used it as the starting point of novel proof theoretic investigations, now 
with a finitist foundation that included recursion equations for all primitive re-
cursive functions as basic principles.4 

In order to carry out the proof theoretic arguments, functions in formal theo-
ries have to be calculable, indeed, calculable from a finitist perspective. That is 
clear from even a rough outline of the consistency proof Hilbert and Bernays 
obtained in early 1922. It was presented in (Hilbert, 1923) and concerns the 
quantifier-free theory we call primitive recursive arithmetic (PRA) and proceeds 
as follows. The linear proofs are first transformed into tree structures; then all 
variables are systematically replaced by numerals resulting in a configuration of 
purely numeric statements that all turn out to be true and, consequently, cannot 
contain a contradiction. Yet to recognize the truth of the numeric formulae one 
has to calculate, from a finitist perspective, the value of functions applied to 
numerals.5 This was a significant test of the new proof theoretic techniques, but 
the result had one drawback: a consistency proof for the finitist system PRA was 
not needed according to the programmatic objectives, but a treatment of quantifi-
ers was required. Following Hilbert’s Ansatz of eliminating quantifiers in favor 
of ε-terms, Ackermann carried out the considerations for “transfinite” theories, 
i.e., for the first-order extension of PRA (correctly, as it turned out, only with just 

 
3 This is in the logicist tradition of Dedekind (cf. Sieg & Schlimm, 2005; Sieg, 2009a). 
4 For the development of Hilbert’s foundational investigations, it has to be mentioned 

that the Göttingen group had in the meantime assimilated Whitehead and Russell’s Prin-
cipia Mathematica; that is clear from the carefully worked out lecture notes from the 
winter term 1917–1918; cf. (Sieg, 1999). 

5 That was done in (Hilbert & Bernays, 1921/2); a summary is found in Section II of 
(Ackermann, 1925), entitled The Consistency Proof Before the Addition of the Transfinite 
Axioms. Ackermann does not treat the induction rule, but that can easily be incorporated 
into the argument following Hilbert and Bernays. The presentation of these early proof 
theoretic results is refined and extended in (Hilbert & Bernays, 1934).  
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quantifier-free induction). Herbrand obtained in 1931 the result for essentially 
the same system, but with recursion equations for a larger class of finitistically 
calculable functions; that is how Herbrand described the relation of his result to 
that of Ackermann in a letter of 7 April, 1931, to Bernays. 

As to the calculability of functions, Hilbert and Bernays had already empha-
sized in their lectures from 1921–1922, “For every single such definition by 
recursion it has to be determined that the application of the recursion formula 
indeed yields a number sign as function value—for each set of arguments”. Such 
a determination was taken for granted for primitive recursive definitions. We find 
here, in a rough form, Herbrand’s way of characterizing broader classes of fi-
nitistically calculable functions according to the schema in his 1931 letter to 
Gödel: 

In arithmetic, we have other functions as well, for example functions defined by 
recursion, which I will define by means of the following axioms. Let us assume 
that we want to define all the functions fn (x1, x2, …, xpn) of a certain finite or infi-
nite set F. Each fn (x1, …) will have certain defining axioms; I will call these axi-
oms (3F). These axioms will satisfy the following conditions: 

(i) The defining axioms for fn  contain, besides fn , only functions of lesser index. 
(ii) These axioms contain only constants and free variables. 
(iii) We must be able to show, by means of intuitionistic proofs, that with these 

axioms it is possible to compute the value of the functions univocally for 
each specified system of values of their arguments. (This letter is found in 
[Gödel, 2003].) 

Having given this schema, Herbrand mentions that the non-primitive recursive 
Ackermann function falls under it. Recall that Herbrand, as well as Bernays and 
von Neumann at the time, used “intuitionistic” as synonymous with “finitist”.  

In two letters from early 1931, Herbrand and Gödel discussed the impact of 
the incompleteness theorems on Hilbert’s Program. Gödel claimed that some 
finitist arguments might not be formalizable even in the full system of Principia 
Mathematica; in particular, he conjectured that the finitist considerations re-
quired for guaranteeing the unicity of the recursion axioms are among them. In 
late 1933, Gödel gave a lecture in Cambridge (Massachusetts) and surveyed the 
status of foundational investigations; see (Gödel, 1933). This fascinating lecture 
describes finitist mathematics and reveals a number of mind changes: (i) when 
discussing calculable functions, Gödel emphasizes their recursive definability, 
but no longer the finitist provability requirement, and (ii) when discussing Hil-
bert’s Program, Gödel asserts that a l l  finitist considerations can be formalized in 
elementary number theory. He supports his view by saying that finitist considera-
tions use only the proof and definition principle of complete induction; the class 
of functions definable in this way includes all those given by Herbrand’s schema. 
I take Gödel’s deliberate decision to disregard the provability condition as a first 
and very significant step toward the next major definition, i.e., that of general 
recursive functions.  
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A few months after his lecture in Cambridge, Gödel was presented with 
Church’s proposal of identifying the calculability of number-theoretic functions 
with their λ-definability. Gödel, according to Church in a letter of 29 November, 
1935, to Kleene, viewed the proposal as “thoroughly unsatisfactory” and pro-
posed “to state a set of axioms which would embody the generally accepted 
properties of this notion [i.e., effective calculability], and to do something on that 
basis” (in Sieg, 1997, p. 463). However, instead of formulating axioms for that 
notion in his 1934 Princeton lectures, Gödel took a second important step in 
further modifying Herbrand’s definition. He considered as g e n e r a l  r e c u r -
s i v e  those total number theoretic functions whose values can be computed in an 
equational calculus, starting with general recursion equations and proceeding 
with very elementary replacement rules. In a 1964 letter to van Heijenoort, Gödel 
asserted, “… it was exactly by specifying the rules of computation that a mathe-
matically workable and fruitful concept was obtained”.6 

Gödel had obviously defined a broad class of calculable functions, but at the 
time he did n o t  think of general recursiveness as a rigorous explication of calcu-
lability.7 Only in late 1935 did it become plausible to him, as he put it on 1 May, 
1968, in a letter to Kreisel, “that my [incompleteness] results were valid for all 
formal systems”. The plausibility of this claim rested on an observation concern-
ing computability in the Postscriptum to his 1936-note, On the Length of Proofs. 
Here is the observation for systems Si of i-th order arithmetic, i  >  0. 

It can, moreover, be shown that a function computable in one of the systems Si, or 
even in a system of transfinite order, is computable already in S1. Thus, the notion 
“computable” is in a certain sense “absolute”, while almost all metamathematical 
notions otherwise known (for example, provable, definable, and so on) quite es-
sentially depend upon the system adopted. (Gödel, 1936, p. 399) 

Ten years later, in his contribution to the Princeton Bicentennial Conference, 
Gödel formulated the absoluteness claim not just for higher-type extensions of 
arithmetic, but for a n y  formal system containing arithmetic, in particular, for set 
theory. The philosophical significance of general recursiveness is almost exclu-
sively attributed to its absoluteness. Connecting his remarks to a previous lecture 
given by Tarski, Gödel started his talk with:  

Tarski has stressed in his lecture (and I think justly) the great importance of the 
concept of general recursiveness (or Turing’s computability). It seems to me that 
this importance is largely due to the fact that with this concept one has for the first 
time succeeded in giving an absolute definition of an interesting epistemological 
notion, i.e., one not depending on the formalism chosen. (Gödel, 1946, p. 150) 

 
6 For brief descriptions of the equational calculus see Gödel’s (1934, pp. 368–369) or 

his (193?, pp. 166–168). 
7 Cf. his letter to Martin Davis quoted in (Davis, 1982, p. 9). 



62 WILFRIED SIEG  
 

In 1965, Gödel added a footnote to this remark clarifying the precise nature of 
the absoluteness claim: 

To be more precise: a function of integers is computable in any formal system 
containing arithmetic if and only if it is computable in arithmetic, where a func-
tion f is called computable in S if there is a computable term representing f. 

The metamathematical absoluteness claim as formulated in 1936 can readily be 
established for the specific theories of higher-order arithmetic. However, in order 
to prove the claim that functions computable in a n y  f o r m a l  s y s t e m  c o n -
t a i n i n g  a r i t h m e t i c  are general recursive, the formal nature of the systems 
has to be rigorously characterized and then exploited. One can do that, for exam-
ple, by imposing on such systems the recursiveness conditions of Hilbert and 
Bernays that were formulated in Supplement II of the second volume of their 
Grundlagen der Mathematik. When proceeding in this way one commits, how-
ever, a subtle circularity in case one simultaneously insists that the general recur-
sive functions allow the proper mathematical characterization of f o r m a l i t y .8 

In Gödel’s 1946 Princeton remark, “Turing’s computability” is mentioned, 
but is listed parenthetically behind general recursiveness without any emphasis 
that it might play a special role. That notion becomes a focal point in Gödel’s 
reflections only in the 1951 Gibbs Lecture where he explores the implications of 
the incompleteness theorems, not in their original formulation, but rather in 
a “much more satisfactory form” that is “due to the work of various mathemati-
cians”. He stresses, “The greatest improvement was made possible through the 
precise definition of the concept of finite procedure, which plays such a decisive 
role in these results”.9 Gödel points out that there are different ways of arriving 
at a precise definition of finite procedure, which all lead to exactly the same 
concept. However, and here is the observation on Turing,  

The most satisfactory way … [of arriving at such a definition] is that of reducing 
the concept of finite procedure to that of a machine with a finite number of parts, 
as has been done by the British mathematician Turing. (Gödel, 1951, pp. 304–305)  

Gödel does not expand on this brief remark; in particular, he gives no hint of 
how r e d u c t i o n  is to be understood. He also does not explain, why such a 
reduction is “the most satisfactory way” of getting to a precise definition or, for 

 
8 This is analyzed in section 2 of (Sieg, 1994) and with an illuminating Churchian per-

spective, in section 4 of (Sieg, 1997). 
9 In a footnote Gödel explains that the concept of “finite procedure” is considered to 

be equivalent to the concept of a “computable function of integers”, i.e., a function f 
“whose definition makes it possible actually to compute f (n) for each integer n”. The 
reason why that can be done is formulated as follows: “The procedures to be considered 
do not operate on integers but on formulas, but because of the enumeration of the formu-
las in question, they can always be reduced to procedures operating on integers”. 
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that matter, why the concept of a machine with a finite number of parts is equiva-
lent to that of a Turing machine. At this point, it seems, the ultimate justification 
lies in the pure and perhaps rather crude fact that finite procedures can be effect-
ed by finite machines.10 

Gödel claims in the Gibbs Lecture (1951, p. 311) that the state of philosophy 
“in our days” is to be faulted for not being able to draw in a mathematically 
rigorous way the philosophical implications of the “mathematical aspect of the 
situation”, i.e., the situation created by the incompleteness results. I have argued 
that not even the mathematical aspect had been clarified in a convincing way; 
after all, it crucially depended on very problematic considerations concerning 
a precise notion of computability.  

II. Finite Machines & Computors 

To bring out very clearly that the appeal to a reduction is a most significant 
step for Gödel, let me go back to the informative manuscript (Gödel, 193?) from 
the late 1930s. In it, Gödel examines general recursiveness and Turing computa-
bility, but under a methodological perspective that is completely different from 
the one found in the Gibbs Lecture. After having given a perspicuous presenta-
tion of his equational calculus, Gödel claims outright that it provides “the correct 
definition of a computable function”. Thus, he seems to be fully endorsing 
Church’s Thesis concerning general recursive functions. He adds a remark on 
Turing asserting, “That this really is the correct definition of m e c h a n i c a l  
computability was established beyond any doubt by Turing”. How did Turing 
establish this claim? Here is Gödel’s answer:  

[Turing] has shown that the computable functions defined in this way [via the 
equational calculus] are exactly those for which you can construct a machine with 
a finite number of parts which will do the following thing. If you write down any 
number n1, …, nr on a slip of paper and put the slip of paper into the machine and 
turn the crank, then after a finite number of turns the machine will stop and the 
value of the function for the argument n1, …, nr will be printed on the paper. (Gö-
del, 193?, p. 168) 

The mathematical theorem stating the equivalence of Turing computability and 
general recursiveness plays the pivotal role at this time: Gödel does not yet focus 

 
10 In his (1933, p. 45) Gödel describes the constructivity requirements on theories and 

explicates the purely formal character of inference rules. The latter “refer only to the 
outward structure of the formulas, not to their meaning, so that they could be applied by 
someone who knew nothing about mathematics, or by a machine”. He also asserts there, 
“thus the highest possible degree of exactness is obtained”. 
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on Turing’s analysis as being the basis for a reduction of mechanical calculability 
to (Turing) machine computability.11  

The appreciation of Turing’s work indicated in the Gibbs Lecture for the first 
time is deepened in other writings of Gödel. Perhaps, it would be better to say 
that Turing’s work appears as a topic of perceptive, but also quite aphoristic 
remarks. Indeed, there are only three such remarks that were published during 
Gödel’s lifetime after 1951: (i) the Postscriptum to the 1931 incompleteness 
paper, (ii) the Postscriptum to the 1934 Princeton Lecture Notes, and (iii) the 
1972 note A Philosophical Error in Turing’s Work. The latter note appeared in 
a slightly different version in Wang’s book from 1974. In the sequel, I will refer 
to the “1972-note” and the “1974-note”, though I am convinced that the first note 
is the later one. 

The brief Postscriptum added to (Gödel, 1931) in 1963 emphasizes the cen-
trality of Turing’s work for both incompleteness theorems; here is the text:  

In consequence of later advances, in particular of the fact that due to A. M. Tu-
ring’s work a precise and unquestionably adequate definition of the general notion 
of formal system can now be given, a completely general version of Theorems VI 
and XI is now possible. That is, it can be proved rigorously that in e v e r y  con-
sistent formal system that contains a certain amount of finitary number theory 
there exist undecidable arithmetic propositions and that, moreover, the consisten-
cy of any such system cannot be proved in the system. (Gödel, 1931, p. 195) 

In the more extended Postscriptum written a year later for his Princeton Lecture 
Notes, Gödel repeats this remark almost verbatim, but then states a reason why 
Turing’s work provides the basis for a “precise and unquestionably adequate 
definition of the general concept of formal system”: “Turing’s work gives an 
analysis of the concept of ‘mechanical procedure’ (alias ‘algorithm’ or ‘computa-
tion procedure’ or ‘finite combinatorial procedure’). This concept is shown to be 
equivalent with that of a ‘Turing machine’” (Gödel, 1934, pp. 369–370). 

In a footnote attached to the last sentence Gödel refers to (Turing, 1936) and 
points to its ninth section, where Turing argues for the adequacy of his machine 
concept. Gödel emphasizes that previous equivalent definitions of computability, 
including general recursiveness and λ-definability, “are much less suitable for 
our purposes”. However, he does not elucidate the special character of Turing 
computability in this context or any other context I am aware of, and he does not 
indicate either, how he thought an analysis proceeded or how the equivalence 

 
11 In the spring of 1939, Gödel gave a logic course at the University of Notre Dame 

and argued for the superiority of the human mind over machines via the undecidability of 
the decision problem for predicate logic; the latter is put into the historical context of 
Leibniz’s Calculemus! He claims: “So here already one can prove that Leibnitzens [sic!] 
program of the calculemus cannot be carried through, i.e. one knows that the human mind 
will never be able to be replaced by a machine already for this comparatively simple 
question to decide whether a formula is a tautology or not”. The conception of machine is 
as in (193?)—an office calculator with a crank. 



 GÖDEL’S PHILOSOPHICAL CHALLENGE (TO TURING) 65 
 

between the (analyzed) concept and Turing computability could be shown. In the 
next paragraph, I will give a very condensed version of Turing’s important argu-
ment, though I note right away that Turing did not view it as p r o v i n g  an 
equivalence result of the sort Gödel described.12  

Call a human computing agent who proceeds mechanically a c o m p u t o r ; 
such a computor operates deterministically on finite, possibly two-dimensional 
configurations of symbols when performing a calculation.13 Turing aims to iso-
late the m o s t  b a s i c  s t e p s  taken in calculations, i.e., steps that need not be 
further subdivided. This goal requires that the configurations on which the com-
putor operates be i m m e d i a t e l y  r e c o g n i z a b l e . Joining this demand with 
the evident limitation of the computor’s sensory apparatus leads to the “bound-
edness” of configurations and the “locality” of operations:  

(B) There is a fixed finite bound on the number of configurations a computor 
can immediately recognize; and  

(L) A computor can change only immediately recognizable (sub-) configura-
tions.  

As Turing considers the two-dimensional character of configurations as inessen-
tial for mechanical procedures, the calculations of the computor, satisfying the 
boundedness and locality restrictions, are directly captured by Turing machines 
operating on strings; the latter can provably be mimicked by ordinary two-letter 
Turing machines.14 

 So, it seems we are naturally and convincingly led from calculations of 
a computor on two-dimensional paper to computations of a Turing machine on 
a linear tape. Are these machines in the end, as Turing’s student Gandy put it, 
nothing but c o d i f i c a t i o n s  of computors? Is Gandy right when claiming in 
(1980, p. 124) that Turing’s considerations provide (the outline of) a proof for the 
claim, “What can be calculated by an abstract human being working in a routine 
way is computable?” Does Turing’s argument thus secure the conclusiveness and 
generality of the limitative mathematical results, respect their broad intellectual 

 
12 I have analyzed Turing’s argument in other papers (e.g., 1994; 2002). My subse-

quent discussion takes Turing machines in the way in which Post defined them in (1947), 
namely, as production systems. That has the consequence that states of mind are physical-
ly represented, quite in Turing’s spirit; cf. part III of section 9 in his paper (1936) and the 
marvelous discussion in (Turing, 1954).  

13 That captures exactly the intellectual problematic and context: the Entscheidungs-
problem was to be solved mechanically by us; formal systems were to guarantee intersub-
jectivity on a minimal, mechanically verifiable level between us.  

14 It should be noted that step-by-step calculations in the equational calculus cannot be 
carried out by a computor satisfying these restrictive conditions: arbitrarily large numerals 
have to be recognized and arbitrarily complex terms have to be replaced by their numeri-
cal values—in one step. 
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context and appeal only to mechanical procedures that are carried out by humans 
without the use of higher cognitive capacities?  

Turing himself found his considerations mathematically unsatisfactory. In-
deed, he took two problematic steps by (i) starting the analysis with calculations 
on two-dimensional paper (this is problematic as possibly more general configu-
rations and procedures should be considered) and (ii) dismissing, without argu-
ment, the two-dimensional character of paper as “no essential of computation”. 
However, a restricted result i s  rigorously established by Turing’s considerations: 
Tu r i n g  m a c h i n e s  c a n  c a r r y  o u t  t h e  c a l c u l a t i o n s  o f  c o m p u -
t o r s —as long as computors not only satisfy (B) and (L), but also operate on 
linear configurations; this result can be extended to extremely general configura-
tions, K-graphs.15 But even then, there is no p r o o f  of Turing’s Thesis.  

The methodological difficulties can be avoided by taking an alternative ap-
proach, namely, to characterize a Tu r i n g  C o m p u t o r  axiomatically as a dis-
crete dynamical system and to show that any system satisfying the axioms is 
computationally reducible to a Turing machine (Sieg, 2002; 2009a). No appeal to 
a thesis is needed; rather, that appeal has been replaced by the task of recogniz-
ing the correctness of axioms for an intended notion. This way of extracting from 
Turing’s analysis clear axiomatic conditions and then establishing a representa-
tion theorem seems to follow Gödel’s suggestion to Church in 1934; it also 
seems to fall, in a way, under the description Gödel gave of Turing’s work, when 
arguing that it analyzes the concept “mechanical procedure” and that “this con-
cept is shown to be equivalent with that of a Turing machine”.16 

With the conceptual foundations in place, we can examine how Gödel and 
Turing thought about the fact that humans transcend the limitations of any par-
ticular Turing machine (with respect to the first incompleteness theorem). They 
chose quite different paths: Gödel was led to argue for the existence of humanly 
effective, non-mechanical procedures and continued to identify finite machines 
with Turing machines; thus, he “established” our topical claim that the human 
mind infinitely surpasses any finite machine. Turing, by contrast, was led to the 
more modest demand of releasing computors and machines from the strict disci-
pline of carrying out procedures mechanically and providing them with room for 
initiative. Let us see what that amounts to. 

III. Beyond Mechanisms & Discipline 

Gödel’s paper (193?) begins by referring to Hilbert’s famous words, “for any 
precisely formulated mathematical question a unique answer can be found”. 

 
15 The underlying methodological matters are discussed in (Sieg & Byrnes, 1996), 

where K-graphs were introduced as a generalization of the graphical structures considered 
in (Kolmogorov & Uspenski, 1963). 

16 In (Martin, 2005), a particular (and insightful) interpretation of Gödel’s view on math-
ematical concepts is given. It is developed with special attention to the concept of set, but it 
seems to be adaptable to the concept of computability. Cf. the summary on pp. 223–224. 
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Those words are taken to assert that for any mathematical proposition A there is 
a proof of either A or not-A, “where by ‘proof’ is meant something which starts 
from evident axioms and proceeds by evident inferences”. He argues that the 
incompleteness theorems show that something is lost when one takes the step 
from this notion of proof to a formalized one:  

[I]t is not possible to formalise (sic!) mathematical evidence even in the domain of 
number theory, but the conviction about which Hilbert speaks remains entirely un-
touched. Another way of putting the result is this: it is not possible to mechanise 
(sic!) mathematical reasoning […]. (Gödel, 193?) 

And that means for Gödel that “it will never be possible to replace the mathemati-
cian by a machine, even if you confine yourself to number-theoretic problems” 
(pp. 164–165). Gödel took this deeply rationalist and optimistic perspective still in 
the early 1970s: Wang reports that Gödel rejected the possibility that there are 
number theoretic problems undecidable for the human mind (Wang, 1974, 
pp. 324–325).17  

Gödel’s claim that it is impossible to mechanize mathematical reasoning is 
supported in the Gibbs Lecture by an argument that relies primarily on the sec-
ond incompleteness theorem; see the detailed analyses in (Feferman, 2006a) and 
(Sieg, 2007, Section 2). This claim raises immediately the question, “What as-
pects of mathematical reasoning or experience defy formalization?” In his 1974-
note, Gödel points to two “vaguely defined” processes that may be sharpened to 
systematic and effective, but non-mechanical procedures; namely, the process of 
defining recursive well-orderings of integers for larger and larger ordinals of the 
second number class and that of formulating stronger and stronger axioms of 
infinity. The point is reiterated in the modified formulation of the 1972-note, 
where Gödel, on p. 305, considers another version of his first theorem that may 
be taken “as an indication for the existence of mathematical yes or no questions 
undecidable for the human mind”. However, he points to a f a c t  that in his view 
weighs against such an interpretation: “There d o  exist unexplored series of axi-
oms which are analytic in the sense that they only explicate the concepts occur-
ring in them”. As an example, he again presents axioms of infinity, “which only 
explicate the content of the general concept of set”. These reflections on axioms 
of infinity and their impact on provability are foreshadowed in (Gödel, 1947, p. 
182), where Gödel asserts that the current axioms of set theory “can be supple-
mented without arbitrariness by new axioms which are only the natural continua-
tion of the series of those [axioms of infinity] set up so far”. So, there may be 
a completeness theorem stating, “every proposition expressible in set theory is 
decidable from the present axioms plus some true assertion about the largeness 
of the universe of all sets”. 

 
17 For a broad discussion of Gödel’s reflections on “absolutely unsolvable problems”, 

cf. (Feferman, 2006a; Kennedy, van Atten, 2004; 2009).  
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Though Gödel calls the existence of an unexplored series of axioms a f a c t , 
he asserts also that the process of forming such a series does not yet form a 
“well-defined procedure which could actually be carried out (and would yield a 
non-recursive number-theoretic function)”, because it would require “a substan-
tial advance in our understanding of the basic concepts of mathematics” (Gödel, 
1972, p. 306). A prima facie startlingly different reason for not yet having a pre-
cise definition of such a procedure is given in the 1974-note, p. 325: it would 
require “a substantial deepening of our understanding of the basic operations of 
the mind”. That is only prima facie different, as Gödel’s 1972-note connects such 
a procedure with the dynamic development of the human mind. 

[M]ind, in its use, is not static, but constantly developing, i.e., that we understand 
abstract terms more and more precisely as we go on using them, and that more 
and more abstract terms enter the sphere of our understanding. (Gödel, 1972, 
p. 306)18 

Gödel continues: 

There may exist systematic methods of actualizing this development, which could 
form part of the procedure. Therefore, although at each stage the number and pre-
cision of the abstract terms at our disposal may be f i n i t e , both […] may c o n -
v e r g e  t o w a r d  i n f i n i t y  in the course of the application of the procedure.  

The procedure mentioned as a plausible candidate for satisfying this description 
is again the process of forming ever stronger axioms of infinity.  

The notes (1972) and (1974) are very closely connected, but there is a subtle 
and yet, it seems to me, substantive difference. In the 1974-note the claim that 
the number of possible states of mind may converge to infinity is a consequence 
of the dynamic development of mind. That claim is followed by a remark that 
begins in a superficially similar way as the first sentence of the above quotation, 
but ends with a quite different observation: “Now there may exist systematic 
methods of accelerating, specializing, and uniquely determining this develop-
ment, e.g. by asking the right questions on the basis of a mechanical procedure” 
(Gödel 1974, p. 325). 

 
18 Gödel’s brief exploration of the issue of defining a non-mechanical, but effective 

procedure is preceded in this note by a severe critique of Turing. He assumes that Turing’s 
argument in the 1936 paper was to show that “mental procedures cannot go beyond me-
chanical procedures” and considers it as inconclusive, because Turing neglects the dynam-
ic nature of mind. However, simply carrying out a mechanical procedure does not, and 
indeed should not, involve an expansion of our understanding. Turing viewed the restrict-
ed use of mind in computations undoubtedly as static. I leave that misunderstanding out of 
the systematic considerations in the main text. The appeal to finiteness of states of mind 
when comparing Gödel’s and Turing’s perspectives is also pushed into the background as 
it is not crucial at all for the central issues under discussion: there does not seem to be any 
disagreement. 
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I do not fully understand these enigmatic observations, but three points can 
be made. First, mathematical experience has to be invoked when asking the right 
questions; second, aspects of that experience may be codified in a mechanical 
procedure and serve as the basis for asking the right questions; third, the answers 
may involve abstract terms that are introduced by the non-mechanical mental 
procedure. We should not dismiss or disregard Gödel’s methodological remark 
that “asking the right questions on the basis of a mechanical procedure” may be 
part of a systematic method to push forward the development of mind.19 Even 
this very limited understanding allows us to see that Gödel’s reflections overlap 
with Turing’s proposal for investigating matters in a more empirical and directly 
computational manner. 

Much of Turing’s work of the late 1940s and early 1950s explicitly deals with 
mental processes. But nowhere is it claimed that the latter cannot go beyond 
mechanical ones. Mechanical processes are still made precise as Turing machine 
computations; in contrast, machines that might exhibit intelligence have a more 
complex structure than Turing machines and, most importantly, interact with 
their environment. Conceptual idealization and empirical adequacy are now 
being sought for quite different purposes, and one might even say that Turing is 
actually trying to capture what Gödel described when searching for a broader 
concept of humanly effective calculability, namely, “… that mind, in its use, is 
not static, but constantly developing”. In his paper Intelligent Machinery, Turing 
states:  

If the untrained infant’s mind is to become an intelligent one, it must acquire both 
discipline and initiative. So far we have been considering only discipline [via the 
universal machine]. […] But discipline is certainly not enough in itself to produce 
intelligence. That which is required in addition we call initiative. This statement 
will have to serve as a definition. Our task is to discover the nature of this residue 
as it occurs in man, and to try and copy it in machines. (Turing, 1948, p. 21)20 

How, in particular, can we transcend discipline when doing mathematics? Tu-
ring provided a hint already in his 1939-paper, where ordinal logics are intro-
duced to expand formal theories in a systematic way; (cf. Feferman, 1988; 2006b) 
for informative discussions. In that paper, his Ph.D. thesis written under the di-

 
19 There seems to be also a connection to remarks in his (1947, pp. 182–183), where 

Gödel points out that there may be “another way” (apart from judging its intrinsic necessi-
ty) to decide the truth of a new axiom. This other way consists in inductively studying its 
success, “that is, its fruitfulness in consequences and in particular in ‘verifiable’ conse-
quences, i.e., consequences demonstrable without the new axiom, whose proofs by means 
of the new axiom, however, are considerably simpler and easier to discover, and make it 
possible to condense into one proof many different proofs”. 

20 In his (1950, p. 459), Turing points out, in a similar spirit: “Intelligent behaviour 
presumably consists in a departure from the completely disciplined behaviour involved in 
computation, but a rather slight one, which does not give rise to random behaviour, or to 
pointless repetitive loops”. 
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rection of Church, Turing distinguishes between i n g e n u i t y  and i n t u i t i o n . 
He observes that in formal logics their respective roles take on a greater definite-
ness. Intuition is used for “setting down formal rules for inferences which are 
always intuitively valid”, whereas ingenuity is to “determine which steps are the 
more profitable for the purpose of proving a particular proposition”. He notes: 

In pre-Gödel times it was thought by some that it would be possible to carry this 
programme to such a point that all the intuitive judgements of mathematics could 
be replaced by a finite number of these rules. The necessity for intuition would 
then be entirely eliminated. (Turing, 1939, p. 209) 

That intuition cannot be eliminated, on account of the first incompleteness 
theorem, is emphasized in Turing’s letters to Max Newman from around 1940 
that have been reprinted in (Copeland, 2004, pp. 211–216). After all, one can 
determine the truth of the Gödel sentence, say, for ZF set theory, despite the fact 
that it is independent of ZF. Providing a general reason for such a determination, 
Turing writes, “… there is a fairly definite idea of a true formula which is quite 
different from the idea of a provable one” (p. 215). Eight years later, in his (1948, 
p. 107), Turing formulated at the very outset reasons given by some for asserting, 
“it is not possible for machinery to show intelligent behaviour [sic!]”. One of the 
reasons is directly related to the limitative theorems. They are assumed to show 
that when machines are used for “determining the truth or falsity of mathematical 
theorems […] then any given machine will in some cases be unable to give an 
answer at all”. This inability of any particular machine is contrasted with human 
intelligence that “seems to be able to find methods of ever-increasing power for 
dealing with such problems ‘transcending’ the methods available to machines” 
(Turing, 1948, p. 108). 

It is thus not surprising that Turing takes in his paper (1950, pp. 444–445) the 
m a t h e m a t i c a l  o b j e c t i o n  to his view quite seriously. He considers the 
objection as based on the limitative results, in particular Gödel’s theorems, which 
are understood by some as proving “a disability of machines to which the human 
intellect is not subject”. Turing gives two responses. The short one states that the 
objection takes for granted, without any sort of proof, that the human intellect is 
not subject to the limitations to which machines provably are. However, Turing 
thinks that the objection cannot be dismissed quite so lightly and proceeds to 
a second response. It acknowledges the superiority of the human intellect with 
respect to a single machine (we can recognize the truth of “its” Gödel sentence), 
but Turing views that as a petty triumph. The reason for this is formulated suc-
cinctly as follows: “There would be no question of triumphing simultaneously 
over a l l  machines. In short, then, there might be men cleverer than any given 
machine, but then there might be other machines cleverer again, and so on” (Tu-
ring, 1950, p. 445). 

Turing does not offer a proof of the claim that there is “no question of tri-
umphing simultaneously over a l l  machines”. It is precisely here that Gödel’s 
“fact” concerning a humanly effective, but non-mechanical procedure seems to 
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be in conflict with Turing’s assertion.21 If the “fact” were a fact, then it would 
sustain the objection successfully. Can one go beyond claim and counterclaim? 
Or, even better, can one use the tension as an inspiration for concrete work that 
elucidates the situation? 

IV. Finding Proofs (With Ingenuity) 

Let us return, as a first positive step towards bridging the gap between claim 
and counterclaim, to Turing’s distinction between ingenuity and intuition. Intui-
tion is explicitly linked to the incompleteness of formal theories and provides an 
entry point to exploiting, through computational work, a certain parallelism be-
tween Turing’s and Gödel’s considerations, when the latter are based on mechan-
ical procedures. Copying the r e s i d u e  in machines is the common task at hand. 
It is a difficult one in the case of mathematical thinking, and Gödel would argue 
an impossible one, if machines are particular Turing machines. Turing would 
agree, of course. Before we can start copying, we have to discover partially the 
nature of the residue; one might hope to begin doing that through proposals for 
finding proofs in mathematics.  

In his lecture to the London Mathematical Society and in Intelligent Machin-
ery, Turing calls for heuristically guided intellectual searches and for initiative 
that includes, in the context of mathematics, proposing new intuitive steps. Such 
searches and the discovery of novel intuitive steps would be at the center of 
“research into intelligence of machinery”. Let me draw a diagram: the formal 
theory FTi has been expanded to the proof theoretically stronger theory FTi+1; the 
theories are presented via Turing machines Mi and Mi+1, respectively. 

 

FTi+1 is given by Turing machine Mi+1 

 

FTi is given by Turing machine Mi 

 
21 “Seems”, as Turing pits individual men against particular machines, whereas Gödel 

pits the “human mind” against machines. This aspect is also briefly discussed in the first 
letter to Newman in (Copeland, 2004, p. 215): if one moves away from considering 
a particular machine and allows machines with different sets of proofs, then “by choosing 
a suitable machine one can approximate ‘truth’ by ‘provability’ better than with a less 
suitable machine, and can in a sense approximate it as well as you please”. 
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The transition from one theory to the next and, correspondingly, from one Turing 
machine to the next is non-mechanical for Gödel as well as for Turing. In Gö-
del’s case, unfolding the explication of the concept of set by a non-mechanical 
method is the basis for a humanly effective procedure. Even if Gödel’s method 
would take into account a mechanical procedure of the character described above, 
in the end, it would present a new and stronger axiom of infinity; it is in this 
sense that the method could be viewed as u n i f o r m . For Turing, it seems, the 
addition of intuitive steps (outside of his ordinal logics) is principally based on 
the analysis of machine learning and computer experimentation.22 It would be 
closely tied to the particulars of a situation without the connecting thread of 
Gödel’s method and, thus, it would not be uniform. In addition, Turing empha-
sizes at a number of places that a random element be introduced into the devel-
opment of machines, thus providing an additional feature that releases them from 
strict discipline and facilitates a step from Mi to Mi+1.  

What is striking is that both Gödel and Turing make “completeness claims”: 
at the end of the second paragraph of section III, I quoted Gödel’s remark from 
his 1947-paper that every set theoretic statement is decidable from the current 
axioms together with “a true assertion about the largeness of the universe of all 
sets”; in note 20, Turing’s remark is quoted that by choosing a suitable machine 
one can approximate “truth” by “provability” and “in a sense approximate it 
[truth] as well as you please”. That is highly speculative in both cases; slightly 
less speculatively, Turing conjectured: 

As regards mathematical philosophy, since the machines will be doing more and 
more mathematics themselves, the centre of gravity of the human interest will be 
driven further and further into philosophical questions of what can in principle be 
done etc. (1947, p. 103) 

This expectation has not been borne out yet, and Gödel would not be surprised. 
However, he could have cooperated with Turing on the “philosophical questions 
of what can in principle be done” and, to begin with, they could have agreed 
terminologically that there is a human mind whose working is not reducible to 
the working of any particular brain. They could have explored and, possibly 
argued about, Turing’s contention in his (1951, p. 472) “that machines can be 
constructed which will simulate the behaviour (sic!) of the human mind very 
closely”. Indeed, Turing had taken a step toward a concept of human mind, when 
he emphasizes at the end of Intelligent Machinery, “the isolated man does not 
develop any intellectual power”, and then argues: 

 
22 Copeland, in his (2006), gives much the same interpretation. He remarks on p. 168: 

“In his post-war writing on mind and intelligence […] the term “intuition” drops from 
view and what comes to the fore is the closely related idea of learning—in the sense of 
devising and discovering—new methods of proof”. 
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It is necessary for him to be immersed in an environment of other men, whose 
techniques he absorbs during the first twenty years of his life. He may then per-
haps do a little research of his own and make a very few discoveries which are 
passed on to other men. From this point of view the search for new techniques 
must be regarded as carried out by the human community as a whole, rather than 
by individuals. (p. 127) 

Turing calls this, appropriately enough, a c u l t u r a l  s e a r c h  in contrast to the 
more limited i n t e l l e c t u a l  s e a r c h e s  possible for individual men or ma-
chines. To build machines that think serves also another purpose as Turing ex-
plained in a 1951 radio broadcast: “The whole thinking process is still rather 
mysterious to us, but I believe that the attempt to make a thinking machine will 
help us greatly in finding out how we think ourselves” (Turing, 1951b, p. 486). 

For the study of human thinking mathematics is a marvelous place to start. 
Where else do we find an equally rich body of rigorously organized knowledge 
that is structured for both intelligibility and discovery? Turing, as we saw above, 
had high expectations for machines’ progress in doing mathematics; but it is still 
extremely difficult for them to “mathematize” on their own. Newman, in a radio 
debate with Braithwaite, Jefferson, and Turing, put the general problem very well: 

Even if we stick to the reasoning side of thinking, it is a long way from solving 
chess problems to the invention of new mathematical concepts or making a gener-
alisation (sic!) that takes in ideas that were current before, but had never been 
brought together as instances of a single general notion. (Turing, 1952, p. 498) 

The important question is whether we can gain, by closely studying m a t h e -
m a t i c a l  p r a c t i c e , a deeper understanding of fundamental concepts, tech-
niques and methods of mathematics and, in that way, advance our understanding 
of the capacities of the mathematical mind as well as of basic operations of the 
mind. This question motivates a more modest goal, namely, formulating strate-
gies for an automated search: not for proofs of new results, but for proofs that 
reflect logical and mathematical understanding; proofs that reveal their intelligi-
bility and that force us to make explicit the i n g e n u i t y  required for a successful 
search.23 The logical framework for such studies must include a s t r u c t u r a l  

 
23 This involves undoubtedly reactions to Turing’s remarks and impatient questions in 

a letter to Newman: “In proofs there is actually an enormous amount of sheer slogging, 
a certain amount of ingenuity, while in most cases the actual ‘methods of proof’ are quite 
well known. Cannot we make it clearer where the slogging comes in, where there is inge-
nuity involved, and what are the methods of proof”? (Copeland, 2004, p. 213). Abramson, 
in his (2008), emphasizes insightfully the significance of Lady Lovelace’s objection. In 
the context here, his emphasis pointed out to me that Turing (1950, p. 451), views “the 
mere working out of consequences from data and general principles” as a “virtue” and as 
a “source for surprises”. Turing articulates that important perspective after having called 
“false” the assumption that “as soon as a fact is presented to a mind all consequences of 
the fact spring into the mind simultaneously with it”. 



74 WILFRIED SIEG  
 

t h e o r y  o f  p r o o f s  that extends proof theory through (i) articulating structural 
features of derivations and (ii) exploiting the meaning of abstract concepts; both 
aspects are crucial for finding humanly intelligible proofs.24 We will hopefully 
find out what kind of broad strategies and heuristic ideas will emerge, what is the 
necessary ingenuity. In this way, we will begin to uncover part of Turing’s resi-
due and part of what Gödel considered as humanly effective, but not mechanical, 
in each case “by asking the right questions on the basis of a mechanical proce-
dure” (Gödel, 1974, p. 325). 

The very last remark in (Turing, 1954) comes back, in a certain sense, to the 
mathematical objection. Turing views the limitative results as being “mainly of 
a negative character, setting bounds to what we can hope to achieve purely by 
reasoning”. Characterizing in a new way the r e s i d u e  that has to be discovered 
and implemented to construct intelligent machinery, Turing continues, “These, 
and some other results of mathematical logic may be regarded as going some 
way towards a demonstration, within mathematics itself, of the inadequacy of 
‘reason’ unsupported by common sense”. This is as close as Turing could come 
to agree with Gödel’s dictum “The human mind infinitely surpasses any finite 
machine”, if “finite machine” is identified with “Turing machine”. 
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24 I have been pursuing a form of such a structural proof theory for quite a number of 

years. Central considerations and results are presented in (Sieg, 2010); there I also pointed 
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the nineteenth century, as described in (Stein, 1988). A fully automated proof search 
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Postscriptum 

This essay was originally published in the volume Computability—Turing, 
Gödel, Church, and Beyond, MIT Press 2013. It is reprinted here with the per-
mission of MIT Press. The current version is not literally the same essay, as 
I made a few minor stylistic changes. Three developments in my own thinking, 
since the completion of the essay in 2011, are worthwhile to point out and to 
describe briefly in this Postscriptum. The first provides a stronger connection to 
the past, the second is a further deepening of the analysis of the concept of com-
putability, and the third yields a systematic connection to the future from the 
perspective of 2011.  

There is then, first of all, a deeper historical understanding of the methodo-
logical basis for the investigations of Gödel and Turing. The crucial building 
blocks for that basis were provided by the radically new structuralist conception 
of mathematics in the work of Dedekind and Hilbert and the dramatically ex-
panded reach of logic primarily through Frege’s efforts; (Sieg & Morris, 2018). 
The mathematical work and the logical work were hardly connected when they 
were created during the last thirty years of the nineteenth century. After White-
head and Russell had reshaped logic through Principia Mathematica, the two 
building blocks were joined and received a rigorous mathematical description in 
(Hilbert & Bernays, 1917–1918). These lectures are the beginning of modern 
mathematical logic and opened the door for metamathematical investigations in 
the 1920s; they are also, via (Hilbert & Ackermann, 1928), the backdrop for 
Gödel and Turing. The emergence of metamathematics took place during the first 
thirty years of the twentieth century; it is incisively described in (Bernays, 1930). 
Many people have contributed to a deeper historical understanding that is re-
flected in the first half of my book Hilbert’s Programs and Beyond. The shift 
from structural to formal axiomatics, absolutely central for Gödel and Turing, is 
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elucidated in (Sieg, 2014). Book and paper contain, of course, references to the 
rich literature. 

The second development is a sharpening of my structural axiomatic approach 
in order to characterize computability as an abstract mathematical concept. That 
is alluded to in this essay at the end of Section II. It has an historical component 
that brings out the significance of Post’s work (Sieg, Szabo & McLaughlin, 
2016); it also uncovers the deep conceptual confluence of Post’s and Turing’s 
work in 1936, presented in (Davis & Sieg, 2015). Finally, in a paper that was 
dedicated to Davis’ ninetieth birthday (Sieg, 2018), I raised and sought to answer 
the key methodological question, “What is the c o n c e p t  of computation?” 
Drawing on my earlier work, the concise answer is given in terms of c o m p u t -
a b l e  d y n a m i c a l  s y s t e m s . This is done against the background of two 
classes of mathematical results generalizing the considerations of Section I (Gö-
del’s Absoluteness) and of Section II (Turing’s Reducibility). The set theoretic 
formulation of the abstract concept “computable dynamical system” is waiting 
for an illuminating category theoretic characterization. 

We finally come to the third development since 2011. It concerns neither the 
historical background for Sections I and II nor the axiomatic sharpening of the 
concept of computation. It is rather connected to the comparative analysis of 
Gödel’s and Turing’s suggestions for transcending mechanical procedures in 
Sections III and IV. The goals of that development are described in broad strokes 
in the penultimate paragraph of the essay and have been pursued within my 
AProS Project that is mentioned in Note 23. The latter seeks to find strategies for 
the automated search for humanly intelligible proofs in constructive and classical 
logic, but also in meta-mathematics (Gödel’s incompleteness theorems) and set 
theory (the Cantor-Bernstein Theorem). My views on “natural formalization 
within a foundational frame” and “human-centered automated proof search” are 
at the center of and operative in (Sieg & Walsh, 2019), respectively (Sieg 
& Derakhshan, 2020). 

The relevant theoretical perspective is this: formalizing mathematical practice 
is central for the significance of proof theoretic investigations, be they concerned 
with the consistency problem of formal theories or with the “mining” of particu-
lar proofs. We use refined, conceptually organized formal frameworks to reflect 
deep structures of mathematical proofs. Thus, we aim for a t h e o r y  o f  
p r o o f s  in which “ordinary” proofs are treated as objects of investigation. That 
is in the spirit of the pioneers. Hilbert remarked in (1918), “[w]e must—that is 
my conviction—take the concept of the specifically mathematical proof as an 
object of investigation”. In just this spirit, Gentzen thought in his (1936, p. 499) 
that one can obtain only through formalization a “rigorous treatment of proofs” 
and emphasized then most strongly, “[t]he objects of proof theory shall be the 
proofs carried out in mathematics proper”.  
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