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methodological framework, we analyze two possible approaches. In both cases we assume 

that we have a non-conditional probabilistic system of beliefs expressed in a language L0, 

and modeled in some initial probability space S, which allows us to assign probabilities to 

sentences from L0. Our aim is to extend this system of beliefs to a given class of sentences 

Φ containing conditionals. 

The first approach is what we call the “credence-like” approach: for a given class 

Φ, we define credence as a function defined directly on linguistic objects. The sec-

ond approach consists in assuming the existence of a standard probability space, in which 

the sentences from the set Φ are interpreted as events. In this case, the degree of belief of 

α is defined as the probability of the corresponding event in the probability space SΦ. We 

present both of these approaches, indicating what their advantages and disadvantages are. 
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1. Introduction 

We are confronted with conditionals virtually everywhere: in everyday situa-

tions, in political discussions, in scientific discourse—and of course in philo-

sophical analysis. When discussing technical problems, we make statements like 

“If the temperature was higher, this piece of metal would melt”; in the context of 

medicine, we make claims concerning the likely outcomes of a treatment that 

was not undertaken. When discussing political fiction, we might like to consider 

“If Reagan worked for the KGB, I will never find out” (Lewis, 1986, p. 155) or 

the famous Oswald-Kennedy examples: “If Oswald did not kill Kennedy, some-

one else” did and “If Oswald had not killed Kennedy, someone else would have” 

given in Adams’ (1970). And when thinking about our fate as philosophers, we 

might analyze statements like “If I became a football player, I would be happy”. 

A lively and rigorous discussion is currently in progress concerning the ap-

propriate logical description of conditionals and its scope of applicability. To be 

specific, an important question is whether it is confined solely to conditionals in 

the indicative mood or encompasses subjunctive or counterfactual instances. In 

this paper, we will confine ourselves to conditionals in the indicative mood, in 

accordance with the approach taken by McGee (1985) and Kaufmann (2004). We 

do not make strong assumptions except for asserting that in specific situations, 

sentences containing conditionals are true, while in others, they are false, and 

that the conditional connective → is not reducible to material implication. This 

renders the problem of the proper logic of conditionals pressing: what are the 

appropriate axioms and the rules of inference? Is some version of the Law of 

Excluded Middle true? Is the Import-Export Principle concerning nested condi-

tionals true and valid?3 Presenting an adequate semantics poses difficulties—it is 

far from clear what the appropriate structures are and how the problem of the 

truth values of conditionals should be handled.4 

The assignment of degrees of belief to conditionals is another intricate prob-

lem, and in this paper we will focus on this issue. Sometimes we are only able to 

give very rough, qualitative estimates (for instance, low versus high) or might 

only have intuitions concerning their relative likelihood. Indeed, most philoso-

phers would consider the conditional claim “If I had become a lawyer, I would 

be rich” as more likely than “If I had become a poet, I would be rich”—even if it 

is quite problematic to assign them precise numerical values.  

In many cases, we are also able to give quantitative estimates. Take a fair die 

as a toy example: we fully agree on the probability of non-conditional proposi-

tions like “It is an even number” or “It is less than 4”, etc. But we also have 

 
3 According to the logical version of the Import-Export Principle, the right-nested 

conditional A → (B → C ) is equivalent to (A  B) → C. 
4 For instance, Edgington (1995) and Gibbard (1981) claim that conditionals are not 

factual sentences. 
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intuitions concerning conditional beliefs: for instance, the chance of “If it was 

even, it would be a six” is 1/3—not 0.15 or 0.99.  

Our degree of belief concerning conditionals depends on our base knowl-

edge, i.e., on the initial, non-conditional probability distribution. Indeed, the 

likelihood of “If it was even, it would be a six” depends on our knowledge of the 

probability distribution on the die. For a fair die, it is 1/3, but for a biased die the 

estimate would be quite different.  

Terminological clarification is necessary, as the term “probability” is used in 

the literature in various senses. Specifically, it is employed in an intuitive sense, 

referring to our subjective judgments—and in this context, the term “degree of 

belief” is more appropriate. In general, it might denote any assignment of a nu-

merical parameter to propositions, intended to model the epistemic attitude of the 

agent in some way (terms such as “likelihood”, “credibility”, “assertability”, or 

“subjective probability” are used here). In this paper, we use the term “probabil-

ity” in the orthodox, mathematical textbook sense, i.e., when referring to a prob-

ability distribution P defined in a probability space S = (Ω, Σ, P). In other cases, 

when considering only a numerical assignment intended to express or measure 

the agents’ epistemic attitude, we use the term “credence”. The term “the degree 

of belief” is used to emphasize that this assignment has a pretheoretic, intuitive 

character. Constructing a formal model that is consistent with these concepts is 

always challenging because our intuitions are often clear only for simple cases 

(such as simple conditionals). The problem arises of how—in a consistent man-

ner—to extend them to more complex sentences of a given language.  

The general problem can be formulated as follows: let L0 be the base  

language concerning non-conditional beliefs, modeled in a probability space 

S = (Ω, Σ, P). Consider its expansion Φ which contains conditionals (we will 

present more precise definitions later). Our task is to extend our probabilistic 

beliefs concerning L0 in such a way that it also accounts for the new sentences 

from Φ. Obviously, this is not a purely technical problem. We aim to define this 

extension in a formally correct fashion, which also takes into account our intui-

tions concerning the degree of belief in conditionals—and fulfills reasonable 

methodological criteria.5 

In the paper we will discuss two possible approaches: 

 

 

 

 

 

 

 

 
5 Our intuitions might be vague and imprecise and even misleading. But we definitely 

need to take them into account—either by incorporating them into the model or by ex-

plaining why we should consider them misleading. Explaining sources of misunderstand-

ing is an important point in clarifying notions. 
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1) The first consists in defining the notion of the degree of belief in a direct 

way, i.e., we formalize it as the credence function Cr: Φ → [0,1]. In this 

case, no probability space is constructed. 

2) The second consists in constructing a probability space SΦ in which sen-

tences from the set Φ are given interpretation as events. The degrees of 

belief are identified with the probability function PΦ in SΦ.6 

Both these approaches differ in their presuppositions, and of course the tech-

nical “implementation” of our intuitive beliefs also differ. We will consider these 

two cases separately, indicating what their advantages and disadvantages are.  

In our opinion, the probabilistic approach has a fundamental advantage over 

an approach based on the notion of credence.  

The structure of the paper is as follows:  

In Section 2, Meaning Postulates Concerning →, we address the problem of 

meaning postulates characterizing the conditional connective—and the problem 

of incorporating them into the formal model. We also give a formal definition of 

a hierarchy of languages L0  L1  L2  L3 …, containing conditionals. L0 is 

the base language, in which non-conditionals claims are expressed.  

In Section 3, The Credence-Like Approach, we discuss the idea of formaliz-

ing the notion of degree of belief as a function defined on the class Φ, without 

assuming the existence of a probability space.  

In Section 4, PCCP: How Should Credences Be Evaluated?, we briefly pre-

sent the claim that the probability of conditionals is conditional probability (in 

the initial probability space S = (Ω, Σ, P)). PCCP is a much-debated topic and is 

also an important example in our presentation.  

In Section 5, The Case of Complex Conditionals, we indicate that, for in-

stance, Adams’ solution to the problem of the credence of conditionals has a very 

limited range, and we need to address also more complex conditionals, which are 

themselves also natural.  

In Section 6, The Probability-Space Approach, we discuss the alternative ap-

proach in which a probability space is constructed, where there is a standard 

probability space in which sentences from Φ are interpreted as events.  

In Section 7, A Brief Comparison and Conclusion, we compare these two ap-

proaches and argue that, for methodological reasons, the probability-space ap-

proach is much better.  

The Appendix contains a brief overview of the general idea of the Markov 

graph model. 

 

 

 

 

 
6 To be precise, the degree of belief of α is formalized as the probability PΦ of the 

event [α] in SΦ, which is the semantic counterpart of α. 
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2. Meaning Postulates Concerning →  

Regardless of which solution (i.e., the “credence-like” versus the probability 

space approach) we are going to choose to model degrees of belief, it is natural 

to think of some universal constraints which any such function should satisfy. An 

obvious requirement is that the credence or probability assignment on condition-

als is an extension of the base system of beliefs. We will also impose some re-

strictions on the interpretation of the connective →. This is natural: we intend to 

model conditionals, not just some arbitrary two-argument connective.  

Consider the following meaning postulates for conditionals: 

(1) The truth of A  B guarantees the truth of the conditional A → B.7 

(2) The truth of A  ¬B implies the falsity of the conditional A → B. 

(3) The conditional A → ¬B is true precisely when the conditional A → B is false. 

(4) If ¬A obtains, our degree of belief as to A → B does not change. 

These postulates guarantee us that the conditional is surely true in some situa-

tions and surely false in others (postulates 1 and 2), that the negation of a condi-

tional is another conditional (postulate 3), and also that the conditional connec-

tive is neither the conjunction nor the material implication (postulate 4).8 These 

 
7 This is a special case of a general rule, which states that if we accept α  β, then we 

accept α → β (for any two sentences α and β—also containing conditionals). The princi-

ple mentioned here concerns the simplest case when A and B are sentences from L0. The 

general version is discussed, for instance, in Egré and Rott’s (2021), Cruz, Over, Oaks-

ford, and Baratgin’s (2016), Berto and Özgün’s (2021), and is known under the names 

And-to-If (this is the terminology we prefer) or Conjunctive Sufficiency. 

Not all authors accept it, even in its simplest version. Their concern is that the infor-

mation contained in the antecedent and consequent in the conditional should be somehow 

mutually relevant. It is true that Berlin is the capital of Germany, and it is also true that 

people are mortal. However, as opponents of And-to-If would claim, one is not justified in 

accepting the conditional “If Berlin is the capital of Germany, then people are mortal”: 

people are mortal not in virtue of Berlin being the capital. And a conditional worthy of its 

name should take conceptual dependencies into account. 

We will not discuss this principle here. Our opinion is that it is justified—it also holds 

in many formal models. For an interesting discussion, see, for instance, Berto and 

Özgün’s (2021). They discuss the logical version, i.e., A  β ⊨ A → β, involving the 

notion of logical consequence. They contend that: 

A number of mainstream theories of indicatives validate And-to-If: the material 

conditional view (Grice, 1989; Jackson, 1987) and the probabilistic-suppositional 

view (Adams, 1975; Edgington, 1995; Evans, Over, 2004), for instance, have it. 

(Berto, Özgün, 2021, p. 3701) 

8 If we interpreted → as a conjunction, then the left side of the equation would always 

be 0, and the right side not always so. If → were the material implication, then the left 

side would be the degree of belief in ¬A, and the right side not necessarily so.  
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postulates establish the basic relations between the classical Boolean connectives 

and the conditional connective →. They can be regarded as certain minimum 

requirements that should be reflected in the definitions of credence and probabil-

ity. However, our aim is not to discuss the general problem of logical rules which 

might be accepted in different logical systems formalizing conditionals (a survey 

can be found, for instance, in Egré, Rott 2021) but rather to indicate how such 

constraints are “implemented” in formal models. We have chosen these particular 

postulates because they are referred to by the authors cited in the present text. 

Our aim is to discuss two different approaches to assessing the degrees of belief 

of conditionals, rather than debating a specific set of postulates. So our analysis 

operates somewhat at a meta-theoretical level in relation to these specific mean-

ing postulates characterizing →.9 

In our considerations we start with the base language L0, which is closed under 

¬ and  (the other Boolean functors are definable). The underlying propositional 

logic is classical. The language L0 is used to express non-conditional propositions. 

By induction, we define a hierarchy of languages: 

L2n+1 = L2n  {(φ → ψ): φ, ψ ∈ L2n}; 

L2n+2 = L2n+1  {¬(φ), (φ  ψ): φ, ψ ∈ L2n+1}, for n = 0, 1, … 

 
9 An interesting example of a different system of such postulates has been given by 

van Fraassen (1976). Van Fraassen considers it to be “the minimal logic of conditionals 

suitable for probabilification” (van Fraassen, 1976, pp. 277–278)—i.e., in any structure 

where probability is defined, these axioms must hold. Here they are: 

(I) (A → C )  (A → B)  (A → (C  B)); 

(II) ((A → C )  (A → B))  (A → (C  B)); 

(III) (A  (A → B))  (A  B); 

(IV) (A → A) = K (the set of all possible worlds); 

Van Fraassen also assumes PCCP (i.e., P(A → B) = P(B |A)) and he presents a con-

struction in which all these assumptions hold. Here we use the symbol P(B |A) for the 

conditional probability of B given A, which is formally defined as:  

P(B |A) = 
P(A  B)

P(A)
, 

for P(A) > 0. Here A, B are events in a probability space, and  is the set-theoretic inter-

section. However, in the literature, the “linguistic” notation is also used, where P refers 

directly to sentences, and in this case what is meant is: 

P(B |A) = 
P(A  B)

P(A)
. 

In relation to the van Fraassen system, one can also contemplate the question of 

whether the credence-like or probability-like approach is superior. Van Fraassen’s set of 

assumptions is satisfied in two of the models mentioned in Section 6 (we give a sketchy 

presentation of one model there). 
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In this way, we obtain an ascending chain of languages L0  L1  L2  L3 

…10 At the odd steps, we add all conditionals of the form φ → ψ. At the even 

steps, we add their Boolean combinations. For example, L1 contains every simple 

conditional (but no other combinations of them). Language L2 contains also all 

their Boolean combinations, for instance (A → B)  ¬(C → D). However, it does 

not contain nested conditionals like A → (C → D) or (A → B) → (C → D), 

which appear in L3. In L4 we have (A → (C → D))  ¬(E → D)— and so on. 

In this definition, we do not pay attention to the probabilities of sentences in 

the original space S. So in particular we include conditionals of the form A → B 

also when P(A) = 0.11  

We are now ready to formulate the main problem of the paper. Consider L0, 

i.e., a language built only by using the conjunction () and negation (¬), and 

a probability space S = (Ω, Σ, P), which allows us to ascribe probability to every 

sentence A ∈ L0. We enrich the language by introducing the new connective →, 

satisfying postulates (1)–(4). Consider a set of sentences Φ in this richer lan-

guage (so Φ is located somewhere in the hierarchy L0  L1  L2  L3 …) and 

two possible ways of expanding the function P, so as to ascribe degrees of belief 

to sentences from Φ: 

(1) By a direct definition of a function Cr: Φ → [0,1]. In this case no probabil-

ity space is constructed and the function Cr ascribes degrees of belief (i.e., 

real numbers from the interval [0,1]) directly to sentences from the set Φ. 

(2) By first constructing a new probability space SΦ = (ΩΦ, ΣΦ, PΦ) in which 

sentences from the set Φ are given interpretations as events. The probability 

of a sentence α is given as the probability PΦ of the corresponding event. 

As both approaches are present in the literature, the natural question arises as 

to what their advantages and disadvantages are, and which one should be consid-

ered better. Obviously, the problem posed in this way requires the formulation of 

criteria against which both extensions can be assessed. The following are the 

criteria which, in our opinion, should be used in the discussion of the pros and 

cons of the solutions: 

 

 

 
10 Such hierarchies might be defined in different ways (for instance, we can perform 

the relevant closure operations in one step, so that the step 2n + 1 and 2n + 2 “merge 

together”), but the general idea is similar: we arrive at the next level by some closure 

operations.  
11 If we consider such conditionals, we need to be careful when defining their cre-

dences and also the interpretations of such sentences in probability spaces. We also might 

exclude such conditionals from our considerations. If we decide to do so, we need to 

make some change in the definition of the hierarchy of the languages. 
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(a) how a given solution incorporates the semantic postulates imposed on the 

conditional connective →; 

(b) what the ontological commitments involved in adopting a given solution are; 

(c) how the solution allows one to deal with more complex cases (in particular 

with the higher levels of the hierarchy L0  L1  L2  L3 …). 

3. The Credence-Like Approach 

The credence-like approach consists—generally speaking—in defining a cre-

dence function Cr: Φ → [0,1], which assigns credence Cr(α) to sentences α ∈ Φ. 

The essential feature of this approach is that no probability space is defined. 

Cr(α) is assigned directly to sentences from the set Φ and it represents the epis-

temic attitude of the agent towards α. This does not mean that the agent thinks of 

a “proportion of the number of circumstances which make α true”, as this notion 

does not even come up in this approach. We can bracket the problem of the truth 

conditions of conditionals; in fact, we can even deny that they have truth condi-

tions altogether.12 

This approach does not involve any additional ontological commitments, as 

compared to, for example, the probability-space approach. Here, we do not as-

sume the existence of extra-linguistic objects, such as truthmakers, regardless of 

their essence. 13 

The rational agent assigns degrees of belief to sentences using the function 

Cr: Φ → [0,1], and this is done without assuming any extralinguistic formal 

structures. It is sufficient to impose some formal conditions on the credence 

function, treating this as its axiomatic definition. It may be likened to the purely 

syntactic approach to logical investigations.14 So both assigning degrees of belief 

 
12 The “credence-like” approach seems natural when we make intuitive assessments 

even without knowing what the underlying mathematical structure is. Indeed, the subjec-

tive probability of rolling a six, and then a tossed coin coming up heads, and then again 

heads—when rolling a fair die, and subsequently tossing a fair coin twice equals 1/24. We 

simply multiply the probabilities and do this without knowing what the proper probabilis-

tic model is (which, in this case is a product space containing 24 equiprobable elementary 

events, the aforementioned sequence being one of them). 
13 Undoubtedly, there are mathematical notions involved, prompting an intriguing in-

quiry into whether the use of mathematical tools in the analysis of philosophical issues 

entails ontological commitments, in the manner of the famous Quine-Putnam indispensa-

bility argument. The philosophy of mathematics is currently witnessing an intense ongo-

ing discussion, and providing even a brief overview is challenging. Here, the focus is not 

on these “theoretical environment” commitments but rather on the “object-level commit-

ments”: if we directly refer to truth-conditions conceived as objects, we need to acknowl-

edge their existence.  
14 The situation is analogous to the characterization of logical systems either in the 

syntactic mode (by giving axioms and rules of inference) or by presenting the semantics, 

i.e., the set of structures in which the language is interpreted. In the case of classical logic, 
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to conditionals and even some calculations are made without referring to the 

probability space in question: they have an intuitive character and rely on as-

sumptions the credence function should satisfy.15 On this approach, it is natural 

to formulate two types of conditions the function Cr should satisfy: both general 

(concerning any credence function) and related to the specific features of the 

conditional connective →. 

The general conditions guarantee that Cr is an extension of the initial proba-

bility function P and that it satisfies a version of Kolmogorov’s axioms (so that 

the agent using it will not be exposed to a Dutch Book-type argument).16 

(i) Cr(¬α) = 1 – Cr(α). 

(ii) Cr(T) = 1, if T is a tautology. 

(iii) Cr(α  β) = Cr(α) + Cr(β) if Cr(α  β) = 0.17 

(iv) Cr(A) = P(A) for every A ∈ L0.18 

The specific conditions refer to how Cr should take into account the interpre-

tation of the conditional connective →. Here we use the example of postulates 

(1)–(4), which imply the following conditions concerning credence: 

(Cr-1) Cr(A  B)  Cr(A → B). 

(Cr-2) Cr((A  ¬B)  (A → B)) = 0. 

(Cr-3) Cr(A → ¬B) = 1 – Cr(A → B). 

(Cr-4) Cr(¬A  (A → B)) = Cr(¬A)  Cr(A → B). 

 
they coincide, but in general this is an interesting problem of the relationship between 

these approaches.  
15 For instance, the arguments of Edgington, Lance, McDermott, Cantwell, et. al. pre-

sented in Section 4 and 5 do not refer to any probability space. However, they do discuss 

the probability of complex conditionals.  
16 In general, if the system of beliefs of an agent violated the rules of probability, it 

would be possible to construct a Dutch Book against it. A Dutch Book is—generally 

speaking—a system of bets with the property that each single bet is considered by the 

agent to be fair. However, accepting the whole system leads inevitably to the agent’s 

loss—and in this way reveals the incoherence of the agents’ views. There is an interesting 

discussion concerning this type of argumentation going on, but it exceeds the scope of the 

present study to present it. See, for instance, Hajek (2009) or Vineberg (2016) for general 

presentation. 
17 We might also formulate it as a stronger claim: 

Cr(α  β) = Cr(α) + Cr(β) – Cr(α  β) 

for all α, β. 
18 We do not consider infinite conjunctions or disjunctions. This means that finite ad-

ditivity is sufficient for our purposes, and we do not need σ-additivity when defining the 

credence directly on the language. 
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It is worth noting that the very formulation of postulates (Cr-2) and (Cr-4) re-

quires that Cr is defined on at least some formulas from the language L2.  

4. PCCP: How Should Probabilities Be Evaluated?  

The simplest case is when we want to add just one single conditional A → B 

to our system of beliefs, so that Φ = L0  {A → B}. In this case, Φ  L1. We 

want to extend our probabilistic beliefs from L0 to Φ, i.e., to assign credence or 

probability to the conditional A → B. This assignment should take into account 

our base knowledge expressed in L0 and modeled in the probability space S and 

also the accepted meaning postulates concerning conditionals.  

Of course, the postulates (Cr-1)–(Cr-4) themselves here do not give us any 

concrete numerical values that should be assigned to the degree of belief as to 

conditionals of the form A → B. We have, by assumption, the numerical values 

of the function Cr given only for non-conditionals sentences from L0: these are 

the values of the function P from the space S. The question is how to use this 

knowledge in order to identify the value Cr(A → B). 

A simple solution has been proposed by Adams (1965; 1970; 1975; 

1998), who defined the notion of the probability of A → B by setting 

P(A → B) ≔ P(B |A), i.e., the standard conditional probability from the probabil-

ity space S, i.e., P(B |A) =  
P(A  B)

P(A)
, for P(A) > 0.19 Adams’ thesis is often referred 

to as PCCP (which stands for “Probability of Conditionals is Conditional Proba-

bility”). Since Adams does not define the probability space in which A → B is 

interpreted (i.e., to which the hypothetical event corresponding to the sentence 

A → B belongs), in our terminology Adams’ definition should be formulated 

rather as Cr(A → B) = P(B |A).20 Many examples confirm that this is very natu-

ral. Indeed, consider our toy example: If it is Even, then it is a Six. Intuitively, its 

probability is 1/3, which is the conditional probability of rolling a 6, given that 

an even number was rolled, which we symbolize as P(It is a Six |  It is Even).21  

Because Adams defined the numerical value of Cr(A → B) as P(B |A), PCCP 

might be considered to be an analytic claim, true by definition. But obviously, it 

 
19 Intuitively, this is the proportion of B-objects/events within the class of A-

objects/events. 
20 In the discussion, the term “probability” is used very often, regardless of the formal 

details. Adams’ original formulation is in terms of assertability. We might also consider 

terms like “reliability”, “credibility”, or “acceptability” (and others). However, we will not 

discuss this issue and generally use the term “degree of belief” when informal judgments 

are in question, and “credence” and “probability” when thinking about the formal models.  
21 “What is the probability that I throw a six if I throw an even number, if not the 

probability that if I throw an even number, it will be a six?” (van Fraassen, 1976, p. 273). 
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is also a substantial claim concerning our pretheoretic assignment of degrees of 

belief to conditional sentences.22 

An important feature of Adams’ approach is that his definition works for 

simple conditionals only, i.e., for A → B, when A, B are sentences from the base 

language, not containing the conditional connective →. In doing this, we are not 

confronted with the conceptual and technical problem of constructing an appro-

priate probability space. However, there is also a price to pay. Regardless of 

whether we accept Adams’ proposal as the appropriate solution of the problem of 

simple conditionals, it is clear that it cannot be applied to more complex proposi-

tions. Adams even declared that “we should regard the inapplicability of proba-

bility to compounds of conditionals as a fundamental limitation of probability, on 

a par with the inapplicability of truth to simple conditionals” (Adams, 1975, 

p. 35). Indeed, even if we agree that the probability of If it is Even, then it is a Six 

is 1/3, and similarly If it is a Prime, it is a Three is 1/3 (prime numbers are 2, 3, 

5), it is not intuitively obvious what the probability of If it is Even, then it is a Six 

and if it is a Prime, it is a Three should be. Is it 1/9? Or 1/3? Or perhaps 0, as 

a six and a three cannot both occur? And in more complex cases (for instance, 

when we have nested conditionals), the situation is even more problematic. Even 

if we could make intuitive judgments in simple cases, this would rather be an ad 

hoc procedure. It is risky to use the notion of credence in a purely intuitive fash-

ion, without having any idea of how the appropriate mathematical model looks. 

Making intuitive judgments is often fraught with various conceptual traps, diffi-

culties, and even paradoxes: we are not good intuitive statisticians, as many 

empirical results show.  

Adams’ solution is therefore of very limited use—it is only effective if the 

set Φ contains only simple conditionals of the form A → B. In other words, the 

Cr function is defined only on formulas from language L1. In particular, this 

means that with Adams’ approach the conditions (Cr-2) and (Cr-4) are not even 

expressible. This can hardly be considered a satisfactory solution. 

 
22  When discussing PCCP, it is impossible not to mention Stalnaker’s contribu-

tion (e.g., Stalnaker, 1968). Indeed, PCCP is also known as “Stalnaker’s Thesis”. 

There are differences between their original versions, for instance Stalnaker speaks of 

conditional degrees of belief, while Adams originally formulated his claims in terms 

of assertability. However, our aim is to discuss the approaches to formalization, and not 

the details of the formulations.  

There is an intense debate on the plausibility of PCCP and its diverse variants and 

modifications (for instance, Bennett, 2003; Edgington, 1995; 2020; Hájek, 2011; 2012; 

Khoo, 2016; Khoo, Santorio, 2018; Rehder, 1982; Stalnaker, 2009; 2019; van Fraassen, 

1976—to name just a few). PCCP is valid in McGee’s model (1989), in Bernoulli-

Stalnaker spaces (Kaufmann, 2004; 2005; 2009; 2015; 2022; van Fraassen, 1976), in the 

Markov graph model (Wójtowicz, Wójtowicz, 2021; 2022), in the model of Węgrecki and 

Wroński (2023), and in the minimal model (Wójtowicz, Wójtowicz, 2023). 

Triviality results purport to show that PCCP is not reliable as a general rule, the seminal 

paper being Lewis (1976; 1986). See, for instance, Hajek (2011) for discussion and gener-

alization, and Khoo and Mandelkern (2019) for discussion concerning linguistic practice. 
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A further step was taken by McGee, who formulated several axioms concern-

ing the credence distribution. 23  One of them is the independence principle, 

which—given mild assumptions—allows one to prove PCCP, i.e.:  

Cr(A → B) = P(B |A).24 

In McGee’s (1989) we also find the following formula for conjoined conditionals: 

Cr((A → B)  (C → D)) = 
 [P(ABCD) + P(AcCD)P(B|A) + P(ABC 

c)P(D|C)]

P(A  C) 
 

In order to justify this formula, McGee presents a very interesting argument 

in terms of fair-bet analysis.25 PCCP is important for McGee’s reasoning, as in 

the fair-bet analysis it is assumed that the credence of (A → B) and (C → D) is 

P(B |A) and P(D |C). 

However, McGee’s formulas are not universally agreed on. The following 

example has been given by McDermott: “[i]f it is odd it will be below three, and 

if it is even it will be above three” (1996, p. 26). 

If we formalize it, it has the form: 

(Odd → Below Three)  (Even → Above Three) 

According to McDermott, its meaning and when it is true is intuitively clear: 

it is true precisely when we see a 1, 4, or 6. So the probability of this sentence 

being true is 1/2. But, according to McGee’s formula, the probability is 2/9.26  

 
23 We use the term “credence” in spite of the fact that McGee consistently uses the 

term “probability”. All his arguments concerning conjoined conditionals are formulated in 

terms of fair bets, not in terms of events in a probability space. So in our presentation of 

McGee’s views, we take some stylistic license in order to maintain coherence with the 

terminology adopted in this paper. 
24 The simplest form of the Independence Principle is: 

Cr(C  (A → B)) = P(C )  Cr(A → B) 

for A and C being mutually exclusive. McGee accepts the more general form: 

Cr(C  (A1 → B1)  (A2 → B2)  …  (An → Bn)) = P(C )  Cr((A1 → B1)  (A2 → B2) 

 …  (An → Bn)), 

where Ai, Bi and C are Boolean sentences and C excludes Ai, for i = 1, …, n.  
25 McGee’s fair-bet argumentation concerning (A → B)  (C → D) does not directly 

involve any interpretation of (A → B)  (C → D) as an event in a probability space. This 

formula coincides with the results obtained with the aid of Stalnaker-Bernoulli spaces 

(results of Kaufmann, 2004; 2005; 2009; 2015; 2022; van Fraassen, 1976). 
26 Another example is given by Edgington (1991, p. 202). Consider an ordinary fair 

coin and a claim of the form: If it is first tossed at t0, it will land heads, and if it is first 

tossed at t1, it will land heads, i.e., after formalization—(T0 → H)  (T1 → H). According 

to McGee’s formula, the probability of this sentence is 0.25. But according to Edgington, 
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Neither of the authors argues directly in terms of a probability space. McGee 

assigns the value 2/9 using fair bet analysis. McDermott (and not only him, see 

Footnote 26) is convinced that it is obvious—that this probability is 1/2. So it 

turns out that relying on intuition alone for complex sentences involving condi-

tionals can yield different results. 

5. The Case of Complex Conditionals 

An additional problem arises when we try want to extend the Cr function 

to certain complex conditionals, i.e., to right-nested conditionals A → (B → C) 

and left-nested conditionals (A → B) → C, which—in our hierarchy—appear at 

level L3.  

 Let us see how McGee deals with them. It does not follow from his assump-

tions that (some form of) PCCP applies to these types of formulas as well. Its 

(hypothetical) form would be: 

Cr(A → (B → C)) = Cr(A  (B → C)) / Cr(A) 

McGee adopts a different solution—he assumes that the following equiva-

lence is always true: 

(EI) (A → (B → C))  ((A  B) → C),27 

 
the probability of this sentence is 1/2. The rationale behind this stipulation is that the coin 

can be tossed for the first time exactly once—and obviously in that case (i.e., when the 

coin is tossed) the probability of its landing heads is ½ (see also Lance, 1991 for a color-

ful werewolf example).  
27 It is interesting to observe how this principle is justified by McGee:  

It appears to be a fact of English usage, confirmed by numerous examples, that we 

assert, deny, or profess ignorance of a compound conditional B → (A → φ) under 

precisely the circumstances under which we assert, deny, or profess ignorance of 

(B  A) → φ. The assertability conditions for “If you are asked to submit to the 

‘voluntary’ urine test, then if you refuse, you will be under suspicion” and “If you 

are asked to submit to the ‘voluntary’ urine test and you refuse, you will be under 

suspicion” are the same. The best explanation for the fact that B → (A → φ) and 

(B & A) → φ are equiassertable is that they are believed to the same degree, which 

is what the Import-Export Principle asserts. (McGee, 1989, pp. 489–490) 

Ciardelli (2020) offers the following argument: 

The argument for this desideratum comes from the observation that (8-a) and (8-

b) seem to express the same thing, and that such examples can be multiplied with-

out running into counterexamples […]. 

(8)  a If Bob is in Paris, then if he is staying in a hotel, he is at the Ritz. 

 b If Bob is in Paris and he is staying in a hotel, he is at the Ritz. (Ciardelli, 

2020, p. 515) 
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from which it follows that: 

(Cr-EI) Cr(A → (B → C)) = Cr((A  B) → C). 

The formula that is the argument of the Cr function on the right side of the 

equation belongs to language L2 and we know how to calculate its value (using 

PCCP). As a result, we are also able to assign credence to the formula on the left 

side of the equation. 

Another example of the argumentation which de facto relies on (Cr-EI) is given 

in Cantwell’s (2022). He considers the sentence “If it is not diamonds (¬D), then if 

it is red (R) it is hearts (H)” to be obviously true, i.e., its degree of belief is 1. 

The sentence is ¬D → (R → H) and after applying IE becomes (¬D  R) → H. 

But (¬D  R) is equivalent to H, which gives the expected conclusion. 

In McGee’s (1985), a similar argument was given which was intended to un-

dermine Modus Ponens (MP) when applied to compound conditionals: “If a Re-

publican wins the election, then if it is not Reagan who wins it will be Anderson”. 

According to McGee, this sentence is true regardless of the situation, which means 

that its degree of belief is 1.  

It is not our aim to take a position on the validity of (Cr-EI). There is a lot of 

discussion concerning it in the literature.28 But even if we adopt it, it does not 

solve other problems. For instance, it is not clear how to handle left-nested con-

ditionals (A → B) → C. Indeed, they are very difficult to analyze in a purely 

intuitive fashion and it is far from clear what a general formula for the credence 

of (A → B) → C would look like.  

McGee deals with this problem decisively. He simply assumes that formu-

las of this type do not occur in the language. Consequently, instead of the hierar-

chy of languages L0  L1  L2  L3… we have been considering, McGee limits 

himself only to a fragment of this hierarchy, allowing only right-nestings of the 

form (A → α).29  

 

So Ciardelli’s justification has an inductive character. This limits its power and makes is 

vulnerable to potential counterarguments (by counterexamples).  
28 Take the wet match example (Lewis, 1973; Stalnaker, 1968). We are willing to con-

sider the claim (a) “If the match is wet, then it will light if you strike it” to be equivalent 

with (b) “If the match is wet and you strike it, then it will light”.  

An interesting analysis has been given in probabilistic terms (Kaufmann, 2005, 

p. 206): (a) of the match getting wet = 0.1; (b) that you strike it = 0.5; (c) that it lights 

given that you strike it and it is dry = 0.9; (d) that it lights given that you strike it and it is 

wet = 0.1. Moreover, striking the match is independent of its wetness. We expect the 

probability of the conditional “If the match is wet, then it will light if you strike it” to be 

0.1—i.e., to obey the Import-Export principle in this case.  
29 McGee puts it this way: 

Let me adopt a restriction at the outset. I only want to look at conditionals whose 

antecedents do not contain conditionals. Conditionals with conditional antecedents 

are used and understood by English speakers, but they occur sufficiently rarely 
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6. The Probability-Space Approach  

This approach has a quite different character. We construct a probability 

space SΦ = (ΩΦ, ΣΦ, PΦ) in which sentences from the set Φ are interpreted as 

events.30 This means that every sentence α ∈ Φ has an interpretation [α]Φ  ΩΦ 

as an event in the space SΦ = (ΩΦ, ΣΦ, PΦ) and has a well-defined probability 

PΦ([α]Φ).31 The degree of belief of the sentence α is therefore defined as the 

probability of its counterpart [α]Φ in the space SΦ.  

What does space SΦ look like? In general, the sample space S = (Ω, Σ, P) is 

designed to model only non-conditional claims—and is not suited to give inter-

pretation to conditionals. In the case of the die, the obvious probability space 

S = (Ω, Σ, P) has six elementary events, i.e., Ω = {1, 2, 3, 4, 5, 6}. But this means 

that the conditional Even → Six has no interpretation as an event within S.32 We 

need something else.  

In order to construct the probability space SΦ, we obviously have to deter-

mine the set of elementary events ΩΦ. Every elementary event ω ∈ ΩΦ has to 

decide—for any sentence α ∈ Φ—whether it supports α or not. In other words, 

when specifying the suitable ΩΦ, we have to define the relation “ω ⊨ α”. (Later 

we give explicit examples of such constructions, in particular concrete defini-

tions of the relation “ω ⊨ α”). Only then will we be able to identify the semantic 

correlate of α as the set [α]Φ = {ω ∈ ΩΦ: ω ⊨ α}. This means that if we want to 

 
that it is hard to gather enough examples to get a fix on what is going on with 

them. (McGee, 1989, p. 486) 
30 In general, there are many spaces of this kind, so we do not really think about “the 

SΦ -space”, but rather about “a SΦ -space”, so—in a sense—SΦ is a metatheoretic variable, 

referring to mathematical objects of a certain type.  
31 Formally, this means that the set [α]Φ is measurable, i.e., it is an element of the σ-

field ΣΦ.  
32 Indeed, none of the 64 subsets of {1, 2, 3, 4, 5, 6} seem appropriate. Should 1 be-

long to the interpretation of Even → Six—i.e., does 1 make this conditional true? That 

does not seem reasonable, but the claim that 1 makes Even → Six false is not reasonable 

either. The results of a single die roll do not decide the conditional, and we need a differ-

ent structure. Similarly, the conditional “If it is not One, it is Two” has—intuitively—

a probability of 1/5. But there is no event with a probability of 1/5 in the sample space. 

The following example is even more striking: consider a simple space consisting of three 

elementary events, i.e., Ω = {X, Y, Z}, and take P(X ) = P(Y ) = P(Z) =1/3. We might think 

of three balls in an urn, numbered 1, 2, 3. Intuitively, the probability of “If it is odd, it is 

three” is 1/2. However, the probability space S = (Ω, Σ, P) contains only events with the 

probabilities 0, 1/3, 2/3, and 1, so it is not suited to give an interpretation for “If it is odd, 

it is three”. 

This is not a coincidence: Hajek (1989) shows that any non-trivial finite-ranged prob-

ability function has more distinct conditional probability values than distinct uncondition-

al probability values. But if PCCP holds, the space needs to give interpretations to all the 

events with the conditional probability values. So the original probability space is not the 

right one: there are not enough events to model all the conditionals. 
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model the conditional α as an event in a probability space, we need to accept 

some notion of the circumstances in which α is true and in which it is false. Giv-

en this, we can say that the probability PΦ of a conditional is the probability of its 

truth in the space SΦ. This is a profound difference when compared with the 

credence approach. 

There are therefore some minimal assumptions that SΦ must satisfy: 

(I) For every α ∈ Φ, there is an event [α]Φ = {ω ∈ ΩΦ: ω ⊨ α}. 

(II) There is a homomorphic imbedding of S into SΦ. 

The first condition ensures that SΦ indeed models Φ, i.e., every sentence 

α ∈ Φ has a semantic counterpart within SΦ. The second condition ensures that it 

is an appropriate extension of S. Intuitively, an imbedding might be imagined as 

presenting a copy of the space S = (Ω, Σ, P) within SΦ = (ΩΦ, ΣΦ, PΦ), which 

preserves the essential features of S.  

Formally, a homomorphic imbedding of S = (Ω, Σ, P) into SΦ = (ΩΦ, ΣΦ, PΦ) 

is a function ι: Ω → ΩΦ satisfying the following conditions (by abuse of lan-

guage we denote the image of the set X  Ω by ι(X)):  

a. ι(Ω) = ΩΦ; 

b. ι(X  Y) = ι(X)  ι(Y), for X, Y  Ω; 

c. ι(X c) = (ι(X ))c, for X  Ω; 

d. PΦ(ι(X)) = P(X), for X  Ω; 

e. [A]Φ = ι([A]) (we can say that the imbedding ι is faithful to the interpreta-

tions of the factual sentences). 

Of course, sentences from L0 are also interpreted in SΦ, as L0  Φ. Condition (e) 

ensures that the direct interpretation of A within SΦ is compatible with the two-step 

procedure: (i) interpreting A in S, and then (ii) imbedding S in SΦ via ι. From the 

definition it follows that if A, B are factual sentences then [A  B]Φ = [A]Φ  [B]Φ 

and [¬A]Φ = Ω \ [A]Φ. So SΦ = (ΩΦ, ΣΦ, PΦ) preserves the structure of interpreta-

tion of L0 within S. Importantly, the initial probabilities of factual sentences 

A ∈ L0 are preserved in SΦ, i.e., PΦ([A]) = P([A]). If the space SΦ satisfies (I) and 

(II), this means—by definition—that: 
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(i) PΦ(¬α) = 1 – PΦ(α); 

(ii) PΦ(T) = 1, if T is a tautology; 

(iii) PΦ(α  β) = PΦ(α) + PΦ(β) if [α]Φ  [β]Φ = ;33 

(iv) PΦ([A]Φ) = P(A) for every A ∈ L0. 

So we know that PΦ is suitable for describing the degrees of belief of a ra-

tional (Dutch-Book resistant) agent whose initial degrees of belief are described 

by the P-function. 

The probabilistic counterparts of the aforementioned principles (1)–(4) are 

mostly just simple corollaries of the claims concerning events, like: if [α]Φ  [β]Φ, 

then PΦ([α]Φ)  PΦ([β]Φ):  

(PΦ -1) Cr(A → (B → C)) = Cr((A  B) → C); 

(PΦ -2) PΦ([(A  ¬B)  (A → B)]Φ) = 0; 

(PΦ -3) PΦ([A → ¬B]Φ) = 1 – PΦ([A → B]Φ); 

(PΦ -4) PΦ([A → B]Φ |[¬A]Φ) = PΦ([A → B]Φ). 

(PΦ -4) can also be written as: 

PΦ([¬A]Φ  [A → B]Φ) = PΦ([¬A]Φ)  PΦ([A → B]Φ, 

or  

PΦ([¬A  (A → B)]Φ) = PΦ([¬A]Φ)  PΦ([A → B]Φ. 

The important question is whether it is possible to define a mathematical 

structure satisfying the requirements imposed on SΦ = (ΩΦ, ΣΦ, PΦ) given above. 

The answer is positive, as documented by many constructions present in the 

literature. The most classic is Stalnaker Bernoulli spaces (Kaufmann, 2004; 2005; 

2009; 2015; van Fraassen, 1976). Wójtowicz and Wójtowicz (2021; 2022) pre-

sent a construction based on the theory of Markov chains: for a given conditional 

α, a Markov chain (graph) G(α) is defined which gives rise to a probability space 

S(α). This space gives a natural interpretation for α as an event [α], and its prob-

ability is computed very simply.34 Constructions of probability spaces are also 

given in Węgrecki and Wroński’s (2023) and Wójtowicz and Wójtowicz’s (2023). 

The mentioned spaces differ in terms of complexity. For instance, elementary 

events in the Stalnaker Bernoulli space are infinite sequences of possible worlds. 

 
33 We do not need σ-additivity when defining the credence directly on a language, as 

we do not consider infinite conjunctions or disjunctions, so finite additivity is sufficient 

for our purposes. 
34 Computations are much simpler than in the Stalnaker-Bernoulli space, as they con-

sist in solving simple systems of linear equations. However, the construction of S(α) is 

limited to the particular conditional α in question. 
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This space has the cardinality of the continuum, so it is rather big. The probabil-

ity measure is defined on a kind of cylindric subset of the set of all sequences.35 

The modification in Bacon (2015) is even more complex: we have transfinite 

sequences of possible worlds (of length ω1, i.e., the first uncountable ordinal 

number) and the probability space is defined in a very interesting, but also math-

ematically quite complex way. 36  The spaces S(α) generated by the Markov 

graphs (Wójtowicz, Wójtowicz, 2021; 2022) are countably infinite, with a very 

simple structure. The probability space in Węgrecki and Wroński (2023) is finite. 

The permutation model in Wójtowicz and Wójtowicz’s (2023) is proven to have 

a minimal size (in a certain, natural class of models). The Węgrecki-Wroński 

model employs a form of formal expressions—broadly speaking—over possible 

worlds. Both models satisfy van Fraassen’s conditions—so both provide a solu-

tion to the problem of giving partial, “small” models of conditionals.  

 We will illustrate the general idea of defining the semantic relation “ω ⊨ α” 

in the constructed space SΦ = (ΩΦ, ΣΦ, PΦ)—and here we use the permutation 

model from Wójtowicz and Wójtowicz’s (2023) as an example.37 As usual, we 

start with a probability space S in which the factual language is interpreted. In 

the simplest nontrivial case the initial space S = (Ω, Σ, P) contains three events, 

so that Ω = {1, 2, 3}. All these events have the same probability, i.e., P(1) = P(2) 

= P(3) = 1/3. It is convenient to identify the subset of Ω with meaningful propo-

sitions in the language. This means that we consider propositions like “It is 

three”, “It is a one”, “It is either a one or a two”, and so on. 

The problem to solve is to construct a space SΦ = (ΩΦ, ΣΦ, PΦ) in which all 

simple conditionals and their Boolean combinations have interpretations, so that 

the semantic relation “ω ⊨ α” can be formally defined. This means that we need 

to interpret sentences like:  

Odd → One (i.e., if it is odd, it is a one) 

¬Two → Three 

(One  Three) → One 

The corresponding probability space SΦ = (ΩΦ, ΣΦ, PΦ) is defined as follows: 

(i) ΩΦ consists of all permutations of set 1,2,3, i.e., ΩΦ = {123, 132, 213, 231, 

312, 321}; 

(ii) The σ-field ΣΦ consists of all subsets of ΩΦ; 

(iii) The probability PΦ of each of these permutations is set to be 1/6. 

 
35 Hall (1994) shows that spaces which allow for modeling all conditionals (and satis-

fy some minimal assumptions, in particular PCCP) must contain events of any probability 

p ∈ [0,1]. 
36 In fact, transfinite induction up to ω1 is needed. 
37 We would like to thank the anonymous referee for emphasizing the necessity of 

providing a concrete example of such constructions here. 
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In order to define the semantic relation “ω ⊨ α” in the space of permutations, 

a very simple rule is used (X, Y, Z are factual propositions): 

ω ⊨ X → Y  iff  the first element in the permutation ω which is an X is also an Y. 

ω ⊨ Z  iff  the permutation ω begins with Z. 

For instance:  

123 ⊨ One (indeed, it begins with 1), 

123 ⊨ Odd → One (the first odd number appearing in 123 is 1), 

213 ⊨ Odd → One (the first odd number appearing in 213 is 1), 

231 ⊨ ¬Two → Three (the first number appearing in 231 which is not 2 is 3), 

231 ⊨ Two  (¬Two → Three). 

If the initial probability space contains n events, we also have the space of all 

permutations (it has n! elements) with the same heuristic rule.  

This demonstrates that this space satisfies van Fraassen’s conditions men-

tioned earlier. The construction can be iterated, so that conditionals of every 

level of complexity can be interpreted there. Of course, the spaces become 

more complex. For instance, if we take our “toy permutation space” consisting 

of the six permutations 123, 132, 213, 231, 312, 321, and perform the next step 

(in order to be able to interpret nested conditionals, like Two → (Odd → One)), 

the “next level space” consists of all the permutations of permutations—and 

there are 6! = 720 such objects. For instance, the permutation of the permutations 

(123)(321)(312)(213)(231)(132) is one of the next-level objects.38  

How do these spaces deal with PCCP and the interpretation of complex con-

ditionals?39 Stalnaker-Bernoulli space allows one to give an interpretation of all 

conditionals (regardless of their complexity) and enables one to extended the 

degrees of belief to any set Φ. For any sentence α, PΦ can be calculated in 

a mathematically sound and unambiguous way. PCCP is satisfied, but (EI) is 

not. However, it is possible to preserve intuitions which in some cases recom-

mend accepting the equivalence of A → (B → C) and (A  B) → C. It is suffi-

 
38 If we define the permutation structures in this way, certain “built-in” principles 

emerge: for instance, the Import-Export principle for conditionals is not universally valid. 

These spaces might be modified in different ways, but a comprehensive discussion of the 

technical details exceeds the scope of this study. 
39 PCCP can be formally formulated as PΦ ([A → B]Φ) = PΦ ([B]Φ | [A]Φ)—here we have 

probabilities of events in space SΦ. (For simple conditionals, as the original space S is imbed-

ded in SΦ and probabilities are preserved, it is equivalent to: PΦ ([A → B]Φ) = P([B] | [A])). 

For complex conditionals of the form α → β which have interpretations in SΦ, the scheme 

is similar: PΦ ([α → β]Φ) = PΦ ([β]Φ | [α]Φ). Whether PCCP holds or not in SΦ is a mathe-

matical problem, not a question of intuitive judgment. 
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cient to distinguish between those situations in which A → (B → C) is reducible 

to (A  B) → C and those in which is not, and then to make an internal transla-

tion of the language: substituting (A  B) → C) for A → (B → C) where we 

consider it reasonable. 

In probabilistic spaces generated by Markov graphs and permutation spaces, 

we obtain similar results,40 but due to the inductive nature of the construction, we 

can match the size of the model to what sentences appear in the set Φ. The space 

SΦ in which we calculate all the probabilities which we are interested in depends 

on the set Φ and is minimal. It can be said that here we achieve an optimal pro-

portion between ontological commitments and model efficiency. In the Appendix 

we present another probabilistic model designed to manage complex conditionals 

in a relatively straightforward manner. 

7. A Brief Comparison and Conclusion  

In the paper we have presented and compared two approaches: one “cre-

dence-like” and the other “via probability space”. There are some common 

methodological prerequisites. In both cases, we assume that we have an exten-

sion of the non-conditional system of beliefs. This means that the probability 

assignments from the base space S are preserved. In both cases, we need to in-

corporate some general postulates concerning conditionals, which put some 

restrictions on the structures. Of course, the “implementation” of these postulates 

is different in both cases. However, these approaches differ in character and rest 

on quite different philosophical assumptions.  

The first is attractive to those suspicious of the notion of a conditional being 

true under some circumstances. The Cr function operates directly on sentences, 

without referring to the existence of any extralinguistic objects. The undoubted 

disadvantage of this approach is that it is very sensitive to the complexity of the 

language in which the set Φ is contained. Adams’s approach might be considered 

extreme: the scope is limited to formulas from L1, as degrees of belief can only 

be attributed to simple conditionals. The more complex approaches (e.g., Cant-

well, 2022; Edgington, 1991; McDermott, 1996; Mc Gee, 1989) extend the func-

tion’s operation also to formulas from L2 or even L3.41 However, there is no gen-

eral agreement on what the value of this function actually is, as is documented in 

the discussions in the literature.  

In the case of the probability-space approach, we need to accept the claim 

that there are entities considered to be semantic correlates of conditionals. Con-

 
40 PCCP is satisfied and (EI) can be modeled to include only reasonable cases. 
41 In the case of McGee’s system (1989), the situation is more complex, as he allows 

also more complex right-nestings. The details are not relevant here. 
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structing such spaces involves in particular defining the set of elementary events 

ΩΦ and specifying the relation ω ⊨ α, for ω ∈ ΩΦ and α ∈ Φ.42 

Introducing ΩΦ comes at a price: some ontological commitments must be ac-

cepted. Of course—wherever possible—we want to keep them to a minimal level 

But once we accept this cost, the probability-space approach raises interesting 

ontological questions concerning the nature and ontological status of the intro-

duced entities. That being said, great methodological advantages. It offers not 

only a method of formalizing the notion of degree of belief, but also offers 

a semantic framework. Last—but not least—once we define the probability 

space SΦ = (ΩΦ, ΣΦ, PΦ) in a mathematically rigorous fashion, we have all the 

methods and theorems of probability theory at our disposal. We can use them to 

formally analyze conditionals, as a source of inspiration for constructing formal 

models, and as a methodological framework in which our considerations can be 

conducted rigorously.43  

Finally, consider the three criteria formulated in Section 3. 

(a) How a given solution incorporates the semantic postulates imposed on the 

conditional connective →. 

This is possible in both cases—see (Cr-1)–(Cr-4) and (PΦ -1)–(PΦ -4). 

(b) What the ontological commitments involved in adopting a given solution are. 

Obviously, the probability space approach brings in certain ontological commit-

ments: it is necessary to postulate the existence of a structure, where conditionals 

have semantic correlates. And these commitments might vary as to their com-

plexity. Of course, nothing like this happens in the case of Cr functions: no onto-

logical assumptions are necessary, as no extralinguistic objects are postulated. 

(c) How the solution allows one to deal with more complex cases (in particular 

with the higher levels of the hierarchy L0  L1  L2  L3 …). 

The probability space approach gives many more possibilities here. For in-

stance, it is possible to construct a space in which the principle (EI) is valid only 

in reasonable cases. In the case of the credence approach, the acceptance of (Cr-

EI) is a way of reducing the problem of assignment of Cr values to right-nested 

conditionals. Also, in the probability-space approach, PCCP can be shown to be 

true not by stipulation, but as a natural result of the way the space is constructed. 

 
42 The core idea is to treat elementary events in the probability space analogously to 

how we handle possible worlds in truth-conditional semantics. We thank the anonymous 

referee for helpful comments on these matters. 
43 In the Appendix, we offer a succinct illustration of a model that facilitates the com-

putation of probabilities for more complex cases. 
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And what seems most important—with the probability space-approach we 

have no problem computing the probability of an arbitrarily complex conditional. 

We do not need to impose any rules restricting the class of conditionals (for in-

stance by excluding left-nested conditionals). This is a task that the credence-like 

approach cannot easily deal with. 

All these arguments lead us to consider the probability space approach 

more fruitful. 

 

 

APPENDIX 

 

This is a brief overview designed to offer readers a general understanding of 

the Markov graph model. We focus on conveying the basic idea without delving 

into technical details and into discussing the philosophical issues involved (for 

both, we refer readers to the details in Wójtowicz, Wójtowicz, 2021; 2022). It is 

convenient to view the presented graphs as computational devices, which enable 

one to compute the probabilities of conditionals in a straightforward manner.  

The general idea of the Markov graph model is to identify the conditional 

with a game—and the probability of the conditional with the probability of win-

ning this game. Consider the illustrative example Even → Six and envision roll-

ing a fair die. When betting on Even → Six, it is not controversial to agree that: 

• If a 6 comes up— we win; 

• If a 2 or 4 comes up—we lose; 

• If a 1, 3, or 5 comes up—the game is undecided. 

In the last case, we continue the game, meaning we continue to roll the die until 

an even number is obtained to determine the outcome. It is conceivable that we 

might need to roll the die 100 times before an even number appears. (Obviously, 

in the case of a fair die this is highly unlikely to happen).  

The dynamics of the game can be represented by a simple graph: 

Figure 1  

The Markov graph for Even → Six 

 

An odd number is “neutral”, so the game remains at START. A 6 transfers the 

game from START to WIN. A 2 or 4 transfers the game from START to LOSS. 
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We win the game if the process arrives at the state WIN. The following graph 

depicts the probabilities of the actions in the case of a fair die: 

Figure 2 

The Markov graph for Even → Six with transition probabilities 44 

 

The probability of winning the game is the probability that ultimately the 

process will be absorbed by WIN. Let: 

• PSTART denote the probability of winning the game once you are in the state 

START; 

• PWIN is the probability of winning the game once you are in the state WIN 

(obviously, it is 1, as you have won already); 

• PLOSS is the probability of winning the game once you are in the state LOSS 

(obviously, it is 0, as you have won already). 

The equation that identifies the probability of reaching the state WIN is: 

PSTART = 
1

2
 PSTART + 

1

6
 PWIN + 

2

6
 PLOSS = 

1

2
 PSTART + 

1

6
 

This equation follows from general mathematical theory, but also has an intuitive 

justification.45 The result is PSTART = 
1

3
, as expected.  

Intuitively, the graph generates various game scenarios, for instance: 

 

 

 

 

 

 
44 We have slightly simplified the graphs: formally, there should be loops (with a prob-

ability of 1) at WIN and LOSS. 
45 You begin the game at START with an initially unknown probability p of winning. 

In this situation, you have the options to (i) loop, i.e., stay at START (with a probability of 

1/2) and your chance of winning is still p, (ii) advance to WIN (this has a probability of 

1/6), which results in a guaranteed chance of winning, i.e., 1, (iii) go to LOSE (this has a 

probability of 2/6) and then your chance of winning is 0. Combining these cases yields the 

corresponding equation. A similar intuitive justification can also be given for more com-

plex cases. 
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• 2 (we lose in the first move); 

• 6 (we win in the first move); 

• 1356 (we win in the fourth move); 

• 55336662 (we lose in the in the eighth move); 

 and so on. 

The probabilities of these scenarios are obvious, intuitively: 

P(2) = 
1

6
 

P(1356) = (
1

2
)3  

1

6
 

P(55336662) = (
1

2
)7  

1

6
 

The general theory of Markov chains assures us that the graph generates 

a probability space. The elementary events in the space are sequences which start 

with a series of odd numbers (possibly empty) followed by an even number. It is 

natural to say that some of these events make the conditional Even → Six true, 

while others make it false. This means, that we can straightforwardly define the 

semantic relation ω ⊨ Even → Six: 

• ω ⊨ Even → Six iff  the sequence ends with a 6; 

• ω ⊨ ¬(Even → Six)  iff  the sequence ends with a 2 or 4. 

For factual sentences, like “It is a Five”, “It is Even”, or “It is not a Prime 

number”, we have the natural stipulation:  

• ω ⊨ X iff  the sequence starts with an X. 

For instance: 

• 55336662 ⊨ It is a Five; 

• 1356 ⊨ It is not Even. 

It is interesting to consider more complex conditionals; for instance, right-

nested conditionals of the form A → (B → C). Here we briefly present the idea 

of the construction for A → (B → C) (the details can be found in Wójtowicz, 

Wójtowicz, 2022). An important feature of the construction is that it does not 
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satisfy the Import-Export Principle, i.e., the meaning of A → (B → C) is—in 

general—different than the meaning of (A  B) → C.46  

Consider a colored fair die. Numbers 1, 2, 3 are Red, numbers 4, 5, 6 are 

Green. Consider the conditional Green → (Even → Six).  

 We roll the die and a 2 comes up. It is red, i.e., non-green. This means that the 

Green sentence has not been satisfied, i.e., the antecedent of Green → (Even → 

Six) is false. This is analogous to the simple conditional (Even → Six) when an 

odd number appears: what happens with the successor does not matter. We might 

think of Green as of an activating event, which “opens” the (Even → Six)-game. 

So, after a 2 shows up, we do not lose, and the game is restarted. Assume we 

see a 6. It is both green and even—we win. If we see a four—we lose. Indeed, it 

is both green and not a six. If we see a 5, the game is not decided, but the status 

of the game changes, as the activating event (Green) has already taken place. 

From now on, we stop paying attention to the colors, and only continue with the 

(Even → Six)-game.  

This is the graph for the game: 

Figure 3 

The Markov graph for Green → (Even → Six) 

 

The state S is the intermediate state: the “Green condition” has already been 

satisfied, so we continue the game.  

The absorption probability is computed by solving a system of equations:  

 
46 So it will not be accepted by someone who accepts Import-Export as a general 

principle. However, we can use the model by performing appropriate translations, i.e., 

A → (B → C ) is translated to (A  B) → C. 
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PSTART = 
1

2
 PSTART + 

1

6
 PWIN + 

1

6
 PLOSS + 

1

6
 PS = 

1

2
 PSTART + 

1

6
 + 

1

6
 PS 

PS = 
1

2
 PS + 

1

6
 PWIN = 

1

2
 PS + 

1

6
 

After solving it, we obtain: 

PSTART = 
4

9
 

As before, we can define the semantic relation ω ⊨ Green → (Even → Six). 

Intuitively, the event ω makes the sentence true iff ω is a scenario that leads 

from START to WIN. For instance: 

• 6 ⊨ Green → (Even → Six); 

• 121256 ⊨ Green → (Even → Six); 

• 52 ⊨ ¬[Green → (Even → Six)]; 

• 334 ⊨ ¬[Green → (Even → Six)].47 

In a similar way, we can similarly analyze more complex conditionals, 

like A → [B → (C → D)]. Consider an urn in which we have balls that have 

three properties: 

(i) Color: they are either White, Green, or Red (W, G, R). 

(ii) Mass: they are Light or Heavy (L, H). 

(iii) Size: they are Big or Small (B, S). 

So there are 12 kinds of balls in the urn, for instance: BHG (Big, Heavy, and 

Green), SHR (Small, Heavy, and Red), and so on.  

Consider the conditional B → [H → (¬W → G)]. As before, we will consider 

the events Big and Heavy as “activating events”. For instance: 

(i) Drawing a BHG leads to WIN in one move. 

(ii) Drawing a BHR leads to LOSS in one move. 

(iii) Drawing a BL redirects us to the H → (¬W → G) game. 

(iv) Drawing a BH redirects us directly to the ¬W → G game. 

 

 
47  The graphs are designed to compute probabilities of specific conditionals, and 

therefore, they may not always offer an interpretation for the entire language (this is not 

needed if we are interested in a specific conditional). The general construction, which 

gives interpretations for all conditionals, is more intricate, see Wójtowicz and Wójto-

wicz’s (2024). 
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The graph is more complex: 

Figure 4 

The graph for B → [H → (¬W → G)] 

 

START is obvious. The state MASS-COLORS is the state where B has al-

ready been activated (but not H!) and we play the (H → (¬W → G))-game. The 

state COLORS is where both B and H have been activated, and we play the 

(¬W → G)-game. The respective probabilities can be computed by solving the 

system of linear equations with three variables: PSTART, PMASS-COLORS, PCOLORS.  

PSTART = P(S)  PSTART + P(BL)  PMASS-COLORS + P(BHW)  PCOLORS + P(BHG) 

PMASS-COLORS = P(L)  PMASS-COLORS + P(HW)  PCOLORS + P(HG) 

PCOLORS = P(W)  PCOLORS + P(G) 

In general, the absorption probability in the Markov graph corresponding to 

the conditional is computed by solving a system of linear equations, which is 

a simple task. 
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