Abstract
DOI: http://doi.org/10.26333/sts.xxxiv1.07
This is a paper for a special issue of Semiotic Studies devoted to Stanislaw Krajewski’s paper (2020). This paper gives some supplementary notes to Krajewski’s (2020) on the Anti-Mechanist Arguments based on Gödel’s incompleteness theorem. In Section 3, we give some additional explanations to Section 4–6 in Krajewski’s (2020) and classify some misunderstandings of Gödel’s incompleteness theorem related to AntiMechanist Arguments. In Section 4 and 5, we give a more detailed discussion of Gödel’s Disjunctive Thesis, Gödel’s Undemonstrability of Consistency Thesis and the definability of natural numbers as in Section 7–8 in Krajewski’s (2020), describing how recent advances bear on these issues.
References
Beklemishev, L. D. (2010). Gödel Incompleteness Theorems and the Limits of Their Applicability I. Russian Math Surveys, 65(5), 857–899.
Benacerraf, P. (1967). God, the Devil and Gödel. The Monist, 51, 9–32.
Boolos, G. (1993). The Logic of Provability. Cambridge: Cambridge University Press.
Carlson, T. J. (2000). Knowledge, Machines, and the Consistency of Reinhardt’s Strong Mechanistic Thesis. Annals of Pure and Applied Logic, 105(1–3), 51–82.
Chalmers, D. J. (1995). Minds, Machines, and Mathematics: A Review of Shadows of the Mind by Roger Penrose. Journal Psyche, 2.
Cheng, Y. (2019). Incompleteness for Higher-Order Arithmetic: An Example Based on Harrington’s Principle (Springer series: Springerbrief in Mathematics). New York: Springer.
Cheng, Y. (2020). Finding the Limit of Incompleteness I. The Bulletin of Symbolic Logic. Retrieved from: https://arxiv.org/pdf/1902.06658.pdf
Cheng, Y. (in press). Current Research on Gödel’s Incompleteness Theorem. The Bulletin of Symbolic Logic.
Enderton, H. B. (2001). A Mathematical Introduction to Logic (2nd ed.). Boston, MA: Academic Press.
Epstein, R. L. (With contributions by Lesław W. Szczerba). (2011). Classical Mathematical Logic: The Semantic Foundations of Logic. Princeton, New Jersey: Princeton University Press.
Feferman, S. (1960). Arithmetization of Metamathematics in a General Setting. Fundamenta Mathematicae, 49, 35–92.
Feferman, S. (1995). Penrose’s Gödelian Argument: A Review of Shadows of the Mind by Roger Penrose. Journal Psyche, 2.
Feferman, S. (2009). Gödel, Nagel, Minds, and Machines. The Journal of Philosophy, 106(4), 201–219.
Gaifman, H. (2000). What Gödel’s Incompletness Result Does and Does Not Show. The Journal of Philosophy, 97(8), 462–470.
Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatsh. Math. Phys. 38(1), 173–198.
Gödel, K. (1986). An Interpretation of the Intuitionistic Propositional Calculus. In S. Feferman et. al. (Eds.), Collected Works, Volume I: Publications 1929–1936 (pp. 301–303). Oxford University Press.
Gödel, K. (1951). Some Basic Theorems on the Foundations of Mathematics and Their Implications. In S. Feferman et. al. (Eds.), Collected Works, Volume III: Unpublished Essays and Lectures (pp. 304–323). Oxford University Press.
Gödel, K. (1995). Collected Works, Volume III: Unpublished Essays and Lectures. New York: Oxford University Press.
Grabmayr, B. (2020). On the Invariance of Gödel’s Second Theorem With Regard to Numberings. The Review of Symbolic Logic. Retrieved from: https://arxiv.org/pdf/1803.08392.pdf
Hájek, P., Pudlák, P. (1993). Metamathematics of First-Order Arithmetic. Berlin-Heidelberg-New York: Springer-Verlag.
Halbach, V., Visser, A. (2014a). Self-Reference in Arithmetic I (2014a). Review of Symbolic Logic, 7(4), 671–691.
Halbach, V., Visser, A. (2014b). Self-Reference in Arithmetic II (2014b). Review of Symbolic Logic, 7(4), 692–712.
Horsten, L. (1998). In Defense of Epistemic Arithmetic. Synthese, 116(1), 1–25.
Horsten, L., Welch, P. (2016). Gödel’s Disjunction: The Scope and Limits of Mathematical Knowledge. Oxford University Press.
Koellner, P. (2006). On the Question of Absolute Undecidability. Philosophia Mathematica, 14(2), 153–188.
Koellner, P. (2016). Gödel’s Disjunction. In L. Horsten, P. Welch (Eds.), Gödel’s Disjunction: The Scope and Limits of Mathematical Knowledge. Oxford University Press.
Koellner, P. (2018a). On the Question of whether the Mind Can Be Mechanized. Part 1: From Gödel to Penrose. Journal of Philosophy, 115(7), 337–360.
Koellner, P. (2018b). On the Question of Whether the Mind Can Be Mechanized. Part 2: Penrose’s New Argument. Journal of Philosophy, 115(9), 453–484.
Kotlarski, H. (2004). The Incompleteness Theorems After 70 Years. Annals of Pure and Applied Logic, 126, 125–138.
Krajewski, S. (2020). On the Anti-Mechanist Arguments Based on Gödel Theorem. Studia Semiotyczne, 34(1), 9–56.
Kurahashi, T. (2019). Rosser Provability and the Second Incompleteness Theorem. Retrieved from: https://arxiv.org/pdf/1902.06863.pdf
Leitgeb, H. (2009). On Formal and Informal Provability. In O. Bueno, Ø. Linnebo (Eds.), New Waves in Philosophy of Mathematics (pp. 263–299). London: Palgrave Macmillan.
Lindström, P. (1997). Aspects of Incompleteness. Cambridge University Press.
Lindström, P. (2001). Penrose’s New Argument. Journal of Philosophical Logic, 30, 241–250.
Lindström, P. (2006). Remarks on Penrose’s New Argument. Journal of Philosophical Logic, 35, 231–237.
Lucas, J. R. (1961). Minds, Machines, and Gödel. Philosophy, 36, 120–124.
Lucas, J. R. (1996). Minds, Machines, and Gödel: A Retrospect. In P. J. R. Millican, A. Clark (Eds.), Machines and Thought: The Legacy of Alan Turing (vol. 1, pp. 103–124). Oxford University Press.
Montague, R. (1963). Syntactical Treatments of Modality, With Corollaries on Reflexion Principles and Finite Axiomatizability. Acta Philosophica Fennica, 16, 153–167.
Murawski, R. (1999). Recursive Functions and Metamathematics: Problems of Completeness and Decidability, Gödel’s Theorems. Heidelberg: Springer Netherlands.
Myhill, J. (1960). Some Remarks on the Notion of Proof. Journal of Philosophy, 57(14), 461–471.
Nagel, E., Newman, J. R. (2001). Gödel’s Proof. New York University Press.
Pakhomov, F. (2019). A Weak Set Theory That Proves Its Own Consistency. Retrieved from: https://arxiv.org/pdf/1907.00877.pdf
Pudlák, P. (1999). A Note on Applicability of the Incompleteness Theorem to Human Mind. Annals of Pure and Applied Logic, 96, pp. 335–342.
Penrose, R. (1989). The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics. Oxford University Press.
Penrose, R. (1994). Shadows of the Mind: A Search for the Missing Science of Consciousness. Oxford University Press.
Penrose, R. (2011). Gödel, the Mind, and the Laws of Physics. In M. Baaz, Ch. H. Papadimitriou, H. Putnam, D. S. Scott, Ch. L. Harper (Eds.), Kurt Gödel and the Foundations of Mathematics: Horizons of Truth (pp. 339–358). Cambridge University Press.
Putnam, H. (1960). Minds and Machines. In S. Hood (Ed.), Dimensions of Mind: A Symposium (pp. 138–164). New York University Press.
Reid, C. (1996). Hilbert. Springer.
Reinhardt, W. N. (1985). Absolute Versions of Incompleteness Theorems. Noûs, 19(3), 317–346.
Reinhardt, W. N. (1985). The Consistency of a Variant of Church’s Thesis With an Axiomatic Theory of an Epistemic Notion. Revista Colombiana de Matematicas, 19, 177–200.
Reinhardt, W. N. (1986). Epistemic Theories and the Interpretation of Gödel’s Incompleteness Theorems. Journal of Philosophical Logic, 15, 427–474.
Shapiro, S. (1985). Epistemic and Intuitionistic Arithmetic. In S. Shapiro (Ed.), Intensional Mathematics (vol. 113 of Studies in Logic and the Foundations of Mathematics, pp. 11–46). Amsterdam: North-Holland.
Shapiro, S. (1998). Incompleteness, Mechanism, and Optimism. The Bulletin of Symbolic Logic, 4(3), 273–302.
Shapiro, S. (2003). Mechanism, Truth, and Penrose’s New Argument. Journal of Philosophical Logic, 32(1), 19–42.
Smith, P. (2007). An Introduction to Gödel’s Theorems. Cambridge University Press.
Smoryński, C. (1977). The Incompleteness Theorems. In J. Barwise (Ed.), Handbook of Mathematical Logic (pp. 821–865). Amsterdam: North-Holland.
Tarski, A., Mostowski, A., Robinson, R. M. (1953). Undecidabe Theories (Studies in Logic and the Foundations of Mathematics). Amsterdam: North-Holland.
Thomason, R. H. (1980). A Note on Syntactical Treatments of Modality. Synthese, 44, 391–395.
Visser, A. (2011). Can We Make the Second Incompleteness Theorem Coordinate Free? Journal of Logic and Computation, 21(4), 543–560.
Visser, A. (2016). The Second Incompleteness Theorem: Reflections and Ruminations. In L. Horsten, P. Welch (Eds.), Gödel’s Disjunction: The Scope and Limits of Mathematical Knowledge (pp. 67–91). Oxford University Press.
Wang, H. (1996). A Logical Journey: From Godel to Philosophy. MIT Press.
Willard, D. E. (2001). Self-Verifying Axiom Systems, the Incompleteness Theorem and Related Reflection Principles. Journal of Symbolic Logic, 66(2), 536–596.
Willard, D. E. (2006). A Generalization of the Second Incompleteness Theorem and Some Exceptions to It. Ann. Pure Appl. Logic, 141(3), 472–496.
Williamson, T. (2016). Absolute Provability and Safe Knowledge of Axioms. In L. Horsten, P. Welch (Eds.), Gödel’s Disjunction: The Scope and Limits of Mathematical Knowledge (pp. 243–253). Oxford University Press.
Zach, R. (2007). Hilbert’s Program Then and Now. In D. Jacquette (Ed.), Philosophy of Logic (pp. 411–447). Amsterdam: North Holland.